Product Environmental Profile

Magelis Rack PC

Product overview

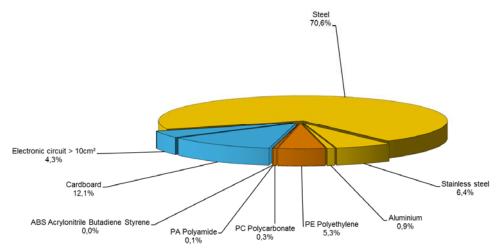
Magelis Rack PC are industrial PC in an 19" rack format to be installed in an automation control room for Engineering and SCADA servers and Operator stations, but also for some dedicated applications in clean areas of industrial plants or lab.

The Magelis Rack PC range is made

- HMIRSP: Performance Rack PC 4U high, for Engineering and SCADA servers, with redundant power supply and Server operating system according to model.
- HMIRSU: Universal Rack PC 2U high, for Local SCADA and Operator stations
- HMIRSO/HMIRXO: Optimized Rack PC 2U high for Operator stations and some dedicated

applications in clean areas of industrial plants or lab.

The representative product used for the analysis is HMIRSUS3A3701.


The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 17 000 g and 38 000 g including packaging. It is 18 985 g for the HMIRSUS3A3701

The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EC of 08 June 2011) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

Details of ROHS and REACH substances information are available on the Schneider-Electric Green Premium website .(http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page)

Manufacturing

Magelis Rack PC product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established..

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive.

The HMIRSUS3A3701 packaging weight is 3 300 g. It consists of 2 300 g of cardboard and 1000 g of polyethylene foam.

Use

The products of the Magelis Rack PC range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The electrical power consumed by the Magelis Rack PC range is between 200 W and 500 W. It is 500 W in active mode and 100 W in standby mode for the referenced HMIRSUS3A3701 The product range does not require special maintenance operations.

End of life

At end of life, the products in the Magelis Rack PC have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains electrolytic capacitors and electronic cards that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website.

 $\underline{http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page$

The recyclability potential of the products has been evaluated using the "ECO DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio without packaging is: 91%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:

- the calculation was performed on the HMIRSUS3A3701
- product packaging is included
- installation : no special components.

- scenario for the Use phase. This product range belongs to the category 2 "energy consuming product", assumed service life is 10 years and use scenario is:

- active phase : 500 W for 85 % uptime;
- sleep phase : 100 W for 15 % uptime.

The electrical power model used for calculation is european model. End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Tresentation of the product environmental impacts								
Environmental indicators	Unit	For HMIRSUS3A3701						
		S = M + D + I + U + E	М	D	I	U	E	
Air Acidification (AA)	kg H+ eq	3,01E+00	2,19E-02	6,12E-04	0,00E+00	2,99E+00	2,46E-04	
Air toxicity (AT)	m³	3,72E+09	2,82E+07	9,10E+05	0,00E+00	3,69E+09	3,66E+05	
Energy Depletion (ED)	MJ	4,43E+05	1,59E+03	4,59E+01	0,00E+00	4,41E+05	1,76E+01	
Global Warming Potential (GWP)	kg CO₂ eq.	2,24E+04	1,19E+02	3,26E+00	0,00E+00	2,23E+04	1,25E+00	
Hazardous Waste Production (HWP)	kg	3,72E+02	2,45E+00	4,03E-06	0,00E+00	3,69E+02	1,55E-06	
Ozone Depletion Potential (ODP)	kg CFC-11 eq.	1,22E-03	1,13E-05	6,17E-09	0,00E+00	1,21E-03	2,37E-09	
Photochemical Ozone Creation Potential (POCP)	kg C₂H₄ eq.	7,82E+00	2,82E-02	8,41E-04	0,00E+00	7,79E+00	3,12E-04	
Raw Material Depletion (RMD)	Y-1	9,31E-13	4,30E-13	6,65E-17	0,00E+00	5,01E-13	2,56E-17	
Water Depletion (WD)	dm3	6,44E+04	6,22E+02	3,38E-01	0,00E+00	6,38E+04	1,30E-01	
Water Eutrophication (WE)	kg PO₄³⁻ eq.	5,66E-02	4,23E-03	6,05E-06	0,00E+00	5,23E-02	2,33E-06	
Water Toxicity (WT)	m ³	6,42E+03	2,38E+01	1,39E+00	0,00E+00	6,39E+03	5,35E-01	

Presentation of the product environmental impacts

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5 and with its database version 2013-02

The Use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: the environmental indicators (without RMD) of other products in this family may be proportional extrapolated by energy consumption values". For RMD, impact may be proportional extrapolated by mass of the product.

System approach

As the products of the range are designed in accordance with the European RoHS Directive 2011/65/EU, they can be incorporated without any restriction in an assembly or an installation subject to this Directive. Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Glossary

Air Acidification (AA)	The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H^+ .		
Air Toxicity (AT)	This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.		
Energy Depletion (ED)	This indicator gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.		
Global Warming (GW)	The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse effect" gases. The effect is quantified in gram equivalent of CO_2 .		
Hazardous Waste Production (HWP)	This indicator quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.		
Ozone Depletion (OD)	This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalen of CFC-11.		
Photochemical Ozone Creation (POC)	This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C_2H_4).		
Raw Material Depletion (RMD)	This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annua reserves of the material.		
Water Depletion (WD)	This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm ³ .		
Water Eutrophication (WE)	Eutrophication is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents It is expressed in grams equivalency of PO43-(phosphate).		
Water Toxicity (WT)	This indicator represents the water toxicity. It takes into account the usually accepted concentration for several substances in water and the quantity of substances released over the life cycle. Indication given corresponds to the water volume needed to dilute these substances down acceptable concentrations.		

PEP achieved with Schneider-Electric TT01 V9 and TT02 V18 procedures in compliance with ISO14040 series standards PEP in line with PEPecopassport PCR : PEP–PCR–ed 2.1-EN-2012 12 11

Schneider Electric Industries SAS 35, rue Joseph Monier CS 30323 F- 92506 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

www.schneider-electric.com

Published by: Schneider Electric