Altivar $^{\text {rT }} 312$ variable speed drives

For 3-phase motors from $0.25 \mathrm{hp}(0.18 \mathrm{~kW})$ to $20 \mathrm{hp}(15 \mathrm{~kW})$

Catalog

2011
- Brochure4

- Catalog 13

Altivar" 312 drives:
 Designed for high performance and compatible with the control system architectures of your machines

User-friendly Open
 Compatible
 Economical

Enhanced communication:

- CANopen"' Daisy Chain, DeviceNet", Profibus"' DP

Simplified user interface:

- Setup via mobile phone (Bluetooth ${ }^{\ominus}$)
- Intuitive navigation
- Local control on the front panel

Numerous application-specific functions
Auto-tuning for maximum performance
Integrated EMC filter
Rugged for use in all environments

Increased performance for industrial machines

- Materials handling and packaging
- Packing
- Textile machines
- Special machines
- Pumps and fans

Up to 30 \% increase in performance

Unique functionality for every type of machine application

Materials handling

- +/- speed
- Brake sequence
- Motor switching
- Management of limit switches
- Switching frequency up to 16 kHz
- Current limitation
- Linear ramps, S, U or customized
- Second ramp

Textiles

- 16 preset speeds
- +/-10 V bipolar input reference
- PI regulator

Packaging and packing

- Brake sequence
- Output contactor control
- Accessible DC bus

Pumps, ventilation

- PI regulator and reference, automatic/manual
- Automatic restart
- Stop modes in the event of a fault
- Limitation of low speed operating time
- Detection of current, torque and thermal state thresholds of drive and motor

Special machines

- Current limitation
- Catch on-the-fly
- Controlled stop on loss of line supply
- Derated operation

Other options

- Protection of machine by locking parameters
- Multiple assignment of logic inputs
- Saving a set of parameters
- Management of external faults
- Display of parameters: current, power, torque, speed, frequency, etc.

Simplicity in operation... Boosts performance of your machines

Universal communication tools and networks for your control system architectures via the RJ45 port.

Increased productivity

- Reduced design and installation costs thanks to the SoMove ${ }^{T M}$ software workshop
- Auto-tuning saves setup time and optimizes performance
- Full mechanical and software compatibility with the Altivar ${ }^{T M} 31$ in event of replacement
- The compact size means smaller enclosures (integrated EMC filter and side-by-side mounting without derating)

Remote HMI terminals

- Same as Altivar ${ }^{T m} 61$ and 71 terminals
- Plain text in your language

- Same as Altivar ${ }^{\text {TM }} 12$ terminals
- LED display

Optimize communication with your control system architectures

One connection, one software tool to program the PLC and configure the drives

Altivar" 312 drives integrate transparently into your architectures and communicate with most control system products:

- Modbus ${ }^{\text {m" }}$ and CANopen" ${ }^{\text {"' }}$ are integrated as standard
- Option cards: CANopen Daisy Chain, DeviceNet"', Profibus"' DP
- Gateways for Ethernet/Modbus and Fipio"/Modbus

A comprehensive product range with universal product references:

Altivar" 312 drives function all over the world.

User-friendly set-up and configuration

A common platform
Duplicate the configuration using the many common tools available for Altivar ${ }^{T M N}$ and Lexium ${ }^{T m}$ series 2 drives: Simple Loader, Multi-Loader, graphic interface, SoMove ${ }^{\text {TM }}$ software workshop, Bluetooth interface and mobile phone software.

Preparation of files

The SoMove software workshop enables the design office to prepare the files for drive configuration. 2 methods for loading the configuration:

- Direct from PC to drive using a USB/RJ45 cable
- Without a PC, via an SD memory card using Multi-Loader

Equipment testing
The SoMove software workshop serves as a dynamic debugging tool for your machine. The oscilloscope function is extremely useful when making adjustments.

Multi-Loader configuration tool The configurations of several drives are stored on a standard SD memory card. Simply load it directly into your PC or insert into the Multi-Loader, which can be used as a card reader.

Simple Loader duplication tool Copy the settings from a configured drive and duplicate on all your machines.

Save Time
when setting up the device: using Multi-Loader, you can select and transfer the required file in a matter of seconds.

Use your mobile to configure your Altivar"' 312 drive

Efficiency

with an all-in-one solution

- Download and transfer configurations
- Drive adjustment and maintenance
- Send and receive configuration files locally or remotely in a matter of seconds

Safety

 and confidentiality- Monitor and adjust your machine from a secure location
- Bypass the usual physical and security constraints to access your machines via the Bluetooth wireless connection. There's no need to open the enclosure!
- Save changes or reinstall saved configurations whenever you want

Simplicity
 and comfort

- Work in comfort using Bluetooth wireless communication Take advantage of the user-friendly SoMove ${ }^{T w}$ Mobile dialog functions
- Always know which menu you are in
- Share configuration files via MMS or email

Altivar ${ }^{\text {m" }}$ Innovation

A wide range of products meeting international standards

Outstanding performance

- All the advantages of Altivar ${ }^{T m} 31$ drives
- Excellent resistance to harsh environments $\left(50^{\circ}\right)$
- Coated cards as standard (IEC 60721-3-3 Classes 3C2 and 3S2)
- Excellent resistance to power supply and motor interference

Large voltage range

- Single-phase 200 to 240 V with an integrated C2 EMC filter and optional C1 filter
- Three-phase 200 to 240 V
- Three-phase 380 to 500 V with integrated C2 EMC filter
- Three-phase 525 to 600 V

Compliance with specific requirements

- Integrated Class 2 EMC filter for radiated and conducted emissions
- Local control integrated in the drive (programmable)
- Positive and negative logic
- DIN rail mounting
- UL Type 1 kit

Standards and certifications
EC/EN 61800-5-1, IEC/EN 61800-3 (environments 1 and 2,
C1 to C3), CE, UL, CSA, C-Tick, NOM, GOST

- Selection guide 14
- Introduction 20
- Altivar ${ }^{\text {™ }} 312$ variable speed drives
\square Specifications 22
\square References 28
- Options
\square Communication buses and networks 30
\square Dialog tools 36
\square Configuration tools 37
\square Braking resistors 42
\square Line chokes 44
\square Integrated EMC filters and optional additional EMC input filters 46
\square Output filters, motor chokes and ferrite suppressors. 48
■ SoMove ${ }^{\text {Tw }}$ setup software. 38
■ Dimensions 50
■ Wiring diagrams 56
■ Mounting and installation 58
- Motors starters 60
- Functions 62
- Product reference index 78

Selection guide IP 20 or IP 21
variable speed drives
for asynchronous and synchronous motors
Type of machine

Pumps and fans (building (HVAC)) (1)

0.18 to 4	0.18 to 15	0.75 to 75
0.18 to 0.75	-	-
0.18 to 2.2	0.18 to 2.2	-
-	-	-
0.18 to 4	0.18 to 15	0.75 to 30
-	-	0.75 to 75
-	0.37 to 15	-
-	-	-
-	0.75 to 15	-
-	-	-
IP 20	IP 21	
Heatsink		
0.1 to 400 Hz	0.1 to 500 Hz	0.5 to 200 Hz
Standard (voltage/frequency) Performance (sensorless flux vector control) Pump/fan (Kn^{2} quadratic ratio)	Standard (voltage/frequency) Performance (sensorless flux vector control) Energy saving ratio	Sensorless flux vector control Voltage/frequency ratio (2 points) Energy saving ratio
-		
150 to 170% of the nominal motor torque	170 to 200% of the nominal motor torque	120% of the nominal motor torque
40	50	50
8	16	7
1	3	2
4	6	3
1	1	1
1	-	-
1	2	2
Modbus ${ }^{\text {m }}$	Modbus and CANopen ${ }^{\text {m* }}$	Modbus, METASYS N2, APOGEE FLN, BACnet ${ }^{\text {m" }}$
-	CANopen Daisy Chain, DeviceNet ${ }^{\text {™ }}$, Profibus ${ }^{\text {"" }}$ DP, Modbus TCP, Fipio"'	LonWorks ${ }^{\text {ma }}$
-		
IP 54 or IP 65 remote terminal	IP 54 or IP 65 remote terminal IP 54 remote graphic display terminal	IP 54 or IP 65 remote graphic display terminal
SoMove ${ }^{\text {me }}$		PCSoft for ATV 212
Simple Loader, Multi-Loader		Multi-Loader
IEC 61800-5-1 IEC 61800-3 (environments 1 and 2, categories C1 to C3, cat. C1 with option for ATV 212)		
C€, UL, CSA, C-Tick, NOM, GOST	C \in, UL, CSA, DNV, C-Tick, NOM, GOST	EN 55011: Group 1, class A and class B with option card. C \in, UL, CSA, C-Tick, NOM
ATV 12	ATV 312	ATV 212

Pumps and fans (industrial)

Selection guide

IP 54 or IP 55

variable speed drives
for asynchronous and synchronous motors
Type of machine

Power range for $\mathbf{5 0}$ to $\mathbf{6 0 ~ H z ~ (k W) ~ l i n e ~ s u p p l y ~}$	
	Single-phase 200 to $240 \mathrm{~V}(\mathrm{~kW})$
	Three-phase 380 to $480 \mathrm{~V}(\mathrm{~kW})$
	Three-phase 380 to $500 \mathrm{~V}(\mathrm{~kW})$

Drive	Output frequency Type of control Transient overtorque

| Functions |
| :--- | :--- |
| Number of functions |
| Number of preset speeds |
| Number of I/O \quadAnalog inputs

 Logic inputsLegic outputs |

Communication	Integrated
	Available as an option

Cards (available as an option)
Dialog tools
Configuration tools Setup software Configuration tool

Standards and certifications

References
Page/Catalog

0.18 to 15
0.18 to 2.2
0.37 to 15

IP 55

Enclosure user-definable up to 4 kW : Vario switch disconnector, LEDs, selector switch, potentiometer

```
0.1 to 500 Hz
Sensorless flux vector control
Voltage/frequency ratio
170 to \(200 \%\) of the nominal motor torque
```

50
16
3
6
1
-
2

Modbus ${ }^{\text {m" }}$ and CANopen ${ }^{\text {"' }}$
Modbus TCP, Fipio ${ }^{\text {T" }}$, Profibus ${ }^{\text {m" }}$ DP, DeviceNet ${ }^{\text {m" }}$
-

IP 65 remote terminal

SoMove ${ }^{\text {m" }}$
Simple Loader

Pumps and fans
(building (HVAC)) (1)

0.75 to 75

- 0.75 to 75
-

$$
\begin{aligned}
& 0.1 \text { to } 200 \mathrm{~Hz} \\
& \text { Sensorless flux vector control } \\
& \text { Voltage/frequency ratio (} 2 \text { points) } \\
& \text { Energy saving ratio } \\
& - \\
& \begin{array}{l}
120 \% \text { of the nominal motor torque for } 60 \\
\text { seconds }
\end{array}
\end{aligned}
$$

50
7
2
3
1
-
2

Modbus, METASYS N2, APOGEE FLN, BACnet" ${ }^{\text {m }}$
LonWorks ${ }^{\text {ma }}$

IP 54 or IP 65 remote graphic display terminal
PCSoft for ATV 212 drive
Multi-Loader

IEC 61800-5-1, IEC 61800-3 (environments 1 and 2, categories C1 to C3) C \in, UL, CSA, C-Tick, GOST

ATV 31C

Altivar ${ }^{\text {mim }}$ 31C variable speed drives
(1) Heating, Ventilation and Air Conditioning

ATV 212W

"Altivar" 212 variable speed drives"

0.75 to 90
0.75 to 90
-

Complex machines

0.75 to 75
0.75 to 75

IP 54	Equipped with a Vario switch disconnector
-	

0.1 to 599 Hz from 0.75 to 45 kW

0.1 to 500 Hz from 55 to 90 kW
Sensorless flux vector control
Voltage/frequency ratio (2 or 5 points)
Energy saving ratio
Vector control without speed feedback
110% of the nominal motor torque for 60 seconds

>100
8
2 to 4
6 to 20
1 to 3
0 to 8
2 to 4

- Equipped with a Vario switch disconnector
0.1 to 599 Hz from 0.75 to 37 kW
0.1 to 500 Hz from 45 to 75 kW
Sensorless flux vector control
Voltage/frequency ratio (2 or 5 points)
ENA System
Vector control with or without speed feedback
220% of the nominal motor torque for 2 seconds 170% for 60 seconds
>150
>150
16
16
2 to 4
2 to 4
6 to 20
6 to 20
1 to 3
1 to 3
0 to }
0 to }
2 to 4
2 to 4

Modbus ${ }^{\text {mw }}$ and CANopen ${ }^{\text {m" }}$
Modbus TCP Daisy Chain, Modbus/Uni-Telway"', EtherNet/IP, DeviceNet"',
Profibus ${ }^{\text {m" }}$ DP V0 and V1, InterBus ${ }^{\text {m" }}$, CC-Link, LonWorks ${ }^{\text {m" }}$, METASYS N2,
APOGEE FLN, BACnet ${ }^{\text {m' }}$
I/O extension cards, "Controller Inside" programmable card, multi-pump cards, encoder interface cards

Modbus TCP Daisy Chain, Modbus/Uni-Telway, EtherNet/IP, DeviceNet, Profibus DP V0 and V1, InterBus, CC-Link

Interface cards for incremental, resolver, SinCos, SinCos Hiperface ${ }^{\circledR}$, EnDat ${ }^{\circledR}$ or SSI encoders, I/O extension cards, Controller Inside programmable card

IP 54 or IP 65 remote graphic display terminal
SoMove ${ }^{\mathrm{mm}}$
Simple Loader, Multi-Loader

IEC 61800-5-1, IEC 61800-3 (environments 1 and 2, categories C1 to C3), IEC 61000-4-2/4-3/4-4/4-5/4-6/4-11
C \in, UL, CSA, DNV, C-Tick, NOM, GOST
ATV 61W ATV 61E
ATV 71W ATV 71E5

Altivar" 61 variable speed drives
Altivar ${ }^{\text {T"M }} 71$ variable speed drives

Selection guide

Altivar ${ }^{\text {r" }} 61$ Plus and Altivar ${ }^{\text {T" }} 71$ Plus variable speed drives
 Integrated solutions

(industrial)

$\mathbf{9 0}$ to $\mathbf{6 3 0}$	$\mathbf{9 0}$ to $\mathbf{8 0 0}$	$\mathbf{6 3 0}$ to $\mathbf{2 4 0 0}$
$\mathbf{9 0}$ to 630	90 to 630	630 to 1400
-	90 to 630	630 to 1800
-	110 to 800	800 to 2400
With enhanced protection		With enhanced protection and integrated cooling circuit

Ready to use	Standard offer Modular with integrated options User-definable on request
0.1 to 500 Hz	
Sensorless flux vector control Voltage/frequency ratio 2 or 5 points Energy saving ratio	
Flux vector control without speed feedback	
120% of the nominal motor torque for 60 seconds	

Modbus ${ }^{\text {m" }}$ and CANopen ${ }^{\text {m" }}$		
Modbus TCP, Modbus/Uni-Telway ${ }^{\text {™ }}$, EtherNet/IP, DeviceNet ${ }^{\text {m" }}$, Profibus ${ }^{\text {™ }}$ DP V0 and V1, InterBus"", CC-Link LonWorks ${ }^{\text {m" }}$, METASYS N2, APOGEE FLN, BACnet ${ }^{\text {m" }}$		
"Controller Inside" programmable card Multi-pump cards		
IP 54 with separate air flows, ATV 61ES5	IP 23 compact version, ATV 61EXC2 IP 54 compact version, ATV 61EXC5 IP 54 with separate air flows, ATV 61EXS 5	With integrated air-cooled circuit: IP 23: ATV 61EXA2 IP 54: ATV 61EXA5 With external water-cooled system: IP 55, on request

ATV 61 Plus

Altivar" 61 variable speed drives

References

Page/Catalog

Complex machines

(industrial and infrastructure)

90 to 500	90 to 630	500 to 2000
90 to 500	90 to 500	500 to 1300
-	90 to 500	500 to 1500
-	110 to 630	630 to 2000
With enhanced protection		With enhanced protection and integrated cooling circuit
Ready to use	Standard offer Modular with integrated options User-definable on request	
0.1 to 500 Hz		
Flux vector control with or without sensor Voltage/frequency ratio (2 or 5 points) ENA System		
Vector control with or without speed feedback		
220% of the nominal motor torque for 2 seconds 170% of the nominal motor torque for 60 seconds		

Modbus ${ }^{\text {ma }}$ and CANopen ${ }^{\text {mw }}$
Modbus TCP, Modbus/Un

"Controller Inside" programmable card

IP 54 with separate air flows, ATV 71ES5	IP 23 compact version, ATV 71EXC2
	IP 54 compact version, ATV 71EXC5
	IP 54 with separate air flows, ATV 71EXS5

IP 23, with integrated air-cooled circuit, ATV 71EXA2 IP 54, with integrated air-cooled circuit, ATV 71EXA5 IP 55, with external water-cooled system (on request)

ATV 71 Plus

Altivar ${ }^{\text {rin }} 71$ variable speed drives

Application: packaging

Application: material handling

Introduction

The Altivar ${ }^{\text {™ }} 312$ drive is a frequency inverter for 200 to 600 V three-phase asynchronous motors from 0.18 to 15 kW .
The Altivar 312 drive is robust, compact and easy to install. Its integrated functions are particularly suitable for the requirements of applications involving simple industrial machines.
By taking into account product setup and use, starting at the design stage, we are able to offer a reliable, cost-effective solution to manufacturers of simple machines and installers.
With its various communication cards that are available as options, the Altivar 312 drive integrates perfectly in the main control system architectures.

Examples of solutions provided:
■ Numerous options for loading, editing and saving drive configurations using various tools, such as the SoMove ${ }^{\text {Tw }}$ setup software, the SoMove Mobile software for mobile phones, remote display terminals and the Simple Loader and Multi-Loader configuration tools.
■ Adaptation to industrial communication buses and networks by simply replacing the drive control I/O card with one of the communication cards
■ User interface identical to the Altivar 12 range of variable speed drives, making setup easy, and enabling those using it to adapt quickly.

Applications

The Altivar 312 drive incorporates functions that are suitable for the most common applications, including:
■ Material handling (small conveyors, hoists, etc.)

- Packing and packaging machines (small bagging machines, labeling machines, etc.)

■ Special machines (mixers, kneaders, textile machines, etc.)
■ Pumps, compressors, fans

Functions

The Altivar 312 drive has six logic inputs, three analog inputs, one logic/analog output and two relay outputs.
The main functions available are as follows:
■ Motor and drive protection

- Linear, S, U or customized acceleration and deceleration ramps
- Local control of the speed reference using the navigation button
- +/- speed
- 16 preset speeds
- Pl regulator and references
- 2-wire/3-wire control

■ Brake sequence

- Automatic catching a spinning load with speed detection and automatic restart

■ Fault configuration and stop type configuration
\square Saving the configuration in the drive
Several functions can be assigned to one logic input.

Comprehensive product offering

The Altivar 312 range of variable speed drives covers motor power ratings from 0.18 kW to 15 kW with four types of power supply:
■ 200 V to 240 V single-phase, 0.18 kW to 2.2 kW (ATV 312HeeeM2)
■ 200 V to 240 V three-phase, 0.18 kW to 15 kW (ATV 312H $\bullet \bullet$ M3)
■ 380 V to 500 V three-phase, 0.37 kW to 15 kW (ATV 312HeeeN4)
■ 525 V to 600 V three-phase, 0.75 kW to 15 kW (ATV 312HeゃeS6)
Several drives can be mounted side by side to save space.
The Altivar 312 drive integrates the Modbus and CANopen communication protocols as standard. The protocols can be accessed via the RJ45 connector on the underside of the drive.
In addition to the Modbus and CANopen ${ }^{\text {m" }}$ protocols that can be accessed as standard, the Altivar 312 drive can be connected to the main industrial communication buses and networks by replacing the drive's control I/O card with one of the communication cards that are available as options: CANopen Daisy chain, DeviceNet ${ }^{\text {Tw }}$ and Profibus ${ }^{\text {TM }}$ DP. The Modbus TCP network and the Fipio ${ }^{\text {TM }}$ bus are also accessible via dedicated gateways.
See page 30.

ATV 312H075M2 front panel door open

Remote display terminal with cover closed

Remote graphic display terminal

Multi-Loader configuration tool

Remote display terminal with cover open: RUN, FWD/REV and STOP/RESET keys accessible

Simple Loader configuration tool

Comprehensive product offering (continued)

The entire range complies with international standards IEC 61800-5-1, IEC 61800-2 and IEC 61800-3, and UL, CSA, C-Tick, NOM and GOST certifications. It has been developed to meet the requirements of environmental directives (RoHS) and those of the European Directives to obtain the $\subset \in$ mark.

EMC electromagnetic compatibility

The incorporation of EMC filters in ATV 312H••॰M2 and ATV 312H•••N4 drives and compliance with EMC requirements simplify installation and provide a very economical means of ensuring devices meet the criteria to receive the $\subset €$ mark. This filter can be disconnected via a jumper or a moveable wire with tag. The ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 3$ and ATV $\mathbf{3 1 2 H} \bullet \bullet \bullet S 6$ drives are designed without an EMC filter.

Filters are available as an option and can be installed by the customer to reduce the emission levels of ATV 312H $\bullet \bullet$ M2, ATV 312H $\bullet \bullet$ M3 and ATV 312H $\bullet \bullet \bullet N 4$ drives. See page 46.

External accessories and options

External accessories and options can be used with Altivar" 312 drives:

- UL Type 1 conformity kits, plates for direct mounting on 35 mm DIN rails, etc.
- Braking resistors, line chokes, additional EMC input filters, output filters, etc.

Dialog and configuration tools
 Human-Machine interface

The 4-digit display 1 displays drive states, faults and parameter values.
The navigation button 2 is used to navigate through the menus, modify values and change the motor speed in local mode.
The RUN and STOP/RESET keys 3 are used to control motor starting and stopping in local mode. These two keys can be made accessible on the front panel by removing the cover 4 from the door.

HMI terminals

The Altivar 312 drive can be connected to a remote display terminal or a remote graphic display terminal, which are available as options.
The remote display terminal can be mounted on an enclosure door with IP 54 or IP 65 degree of protection. It provides access to the same functions as the HumanMachine interface.
The remote graphic display terminal, with its "full text" display in the user's language, provides a user-friendly interface for configuration, debugging or maintenance.
See page 36 .

SoMove setup software

The SoMove ${ }^{\text {m }}$ setup software is used to configure, adjust and debug the Altivar 312 drive with the Oscilloscope function, and also for maintenance of this drive, like all other Schneider Electric drives and starters.
It can be used with a direct connection or a Bluetooth ${ }^{\ominus}$ wireless connection.
See page 37.

SoMove Mobile software for mobile phones

The SoMove Mobile software is used to edit the drive parameters from a mobile phone via a Bluetooth ${ }^{\circledR}$ wireless connection.
It can also be used to save configurations. These configurations can be imported or exported from a PC via a Bluetooth ${ }^{\circledR}$ wireless connection.
See page 37 .

Simple Loader and Multi-Loader tools

The Simple Loader tool enables one powered-up drive's configuration to be duplicated on another powered-up drive.
The Multi-Loader tool enables configurations to be copied from a PC or a poweredup drive and duplicated on another powered-up drive.
See page 37.

Specifications: page 22	References: page 28	Dimensions: page 50	Wiring diagrams: page56	Functions: page 62
page 22	page 28	page 50	page56	page 62

Altivar ${ }^{\text {Tm }} 312$
variable speed drives

Environmental specifications

Conformity to standards			Altivar" 312 drives have been developed to conform to the strictest international standards and the recommendations relating to electrical industrial control devices (IEC), in particular: IEC 61800-5-1 (low voltage), IEC 61800-3 (EMC immunity and conducted and radiated EMC emissions).
EMC immunity			IEC 61800-3, Environments 1 and 2 (EMC requirement and specific test methods) IEC 61000-4-2 level 3 (electrostatic discharge immunity test) IEC 61000-4-3 level 3 (radio-frequency radiated electromagnetic field immunity test) IEC 61000-4-4 level 4 (electrical fast transient/burst immunity test) IEC 61000-4-5 level 3 (surge immunity test)
Conducted and radiated EMC emissions for drives	ATV 312H••••๑		IEC 61800-3, Environments: 2 (industrial power supply) and 1 (public power supply), restricted distribution
	ATV 312H018M2 to HU15M2 ATV 312 H 037 N 4 to HU40N4		IEC 61800-3 category C2 With additional EMC filter (1): - IEC 61800-3 category C1
	ATV 312HU22M2, ATV 312HU55N4 to HD15N4		IEC 61800-3 category C3 With additional EMC filter (1): IEC 61800-3 category C2 IEC 61800-3 category C1
	ATV 312H018M3 to HD15M3		With additional EMC filter (1): IEC 61800-3 category C2
¢€ marking			The drives are marked $\subset \in$ in accordance with the European low voltage (2006/95/EC) and EMC (2004/108/EC) directives
Product certification			UL, CSA, NOM, GOST, C-Tick and DNV
Degree of protection			IP 31 and IP 41 on upper part and IP 21 on connection terminals
Vibration resistance Drive not mounted on DIN rail Shock resistance			Conforming to IEC 60068-2-6: 1.5 mm peak to peak from 3 to $13 \mathrm{~Hz}, 1 \mathrm{gn}$ from 13 to 150 Hz
Shock resistance			15 gn for 11 ms conforming to IEC 60068-2-27
Maximum ambient pollution Definition of insulation			Degree 2 conforming to IEC 61800-5-1
Environmental conditions Use			IEC 60721-3-3 classes 3C2 and 3S2
Relative humidity		\%	5 to 95 non-condensing, no dripping water, conforming to IEC 60068-2-3
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	-10 to +50 without derating -10 to +60 with derating removing the protective cover on top of the drive (see derating curves, page 58)
	Storage	${ }^{\circ} \mathrm{C}$	-25 to +70
Maximum operating altitude	ATV 312H $\bullet \bullet \bullet \bullet \bullet$	m	1000 without derating
	ATV 312H $\bullet \bullet$ M2	m	Up to 2000 for single-phase supplies and corner grounded distribution networks, derating the current by 1% for each additional 100 m
	ATV 312H $\bullet \bullet$ M3 ATV 312H $\bullet \bullet \bullet N 4$ ATV 312H $\bullet \bullet$ •S6	m	Up to 3000 metres for three-phase supplies, derating the current by 1% for each additional 100 m
Operating position Maximum permanent angle in relation to the normal vertical mounting position			

(1) See table on page 47 to check the permitted cable lengths.

Introduction:	References:	Dimensions:	Wiring diagrams:
page 20	page 28	page 50	page56

Drive specifications

Output frequency range			Hz	0 to 500	
Switching frequency			kHz	Nominal switching frequency: 4 kHz without derating in continuous operation. Adjustable during operation from 2 to 16 kHz Above 4 kHz , derate the nominal drive current. The nominal motor current should not exceed this value. See derating curves on page 58	
Speed range				1 to 50	
Transient overtorque				170 to 200\% of nominal motor torque (typical value)	
Braking torque	With braking resistor	ATV 312H••••๑७		100% of nominal motor torque continuously and up to 150% for 60 s	
	Without braking	ATV 312H018M2		150\% of nominal motor torque (typical value)	
	resistor	ATV 312H037M2 to H075M2 ATV 312H018M3 to H075M3 ATV 312H037N4 to H075N4 ATV 312H075S6		100\% of nominal motor torque (typical value)	
		ATV 312HU11M2, HU15M2 ATV 312HU11M3, HU15M3 ATV 312HU11N4, HU15N4 ATV 312HU15S6		50% of nominal motor torque (typical value)	
		ATV 312HU22M2 ATV 312HU22M3 to HD15M3 ATV 312HU22N4 to HD15N4 ATV 312HU22S6 to HD15S6		30% of nominal motor torque (typical value)	
Maximum transient current				150\% of the nominal drive current for 60 seconds (typical value)	
Motor control profiles				- Standard ratio (voltage/frequency) - Performance ratio (sensorless flux vector control) - Pump/fan ratio (Kn^{2} quadratic ratio) - Energy saving ratio (specifically for ventilation)	
Frequency loop gains				Factory-set with speed loop stability and gain Possible options for machines with high resistive torque or high inertia, or for machines with fast cycles	
Slip compensation				Automatic whatever the load. Can be inhibited or adjusted	
Electrical power specifications					
Power supply		Voltage	V	200-15\% to $240+10 \%$ single-phase for ATV 312••••M2 200-15\% to $240+10 \%$ three-phase for ATV 312••••M3 $380-15 \%$ to $500+10 \%$ three-phase for ATV 312••••N4 $525-15 \%$ to $600+10 \%$ three-phase for ATV $312 \bullet \bullet \bullet \bullet$ S6	
		Frequency	Hz	50 to $60+5 \%$	
Prospective short-circuit current Isc		ATV 312••••M2	A	$\leqslant 1000$ (Isc at the connection point) for single-phase power supply	
		ATV 312H018M3 to HU40M3 ATV 312H037N4 to HU40N4 ATV 312H075S6 to HU40S6	A	$\leqslant 5000$ (Isc at the connection point) for three-phase power supply	
		ATV 312HU55M3 to HD15M3 ATV 312HU55N4 to HD15N4 ATV 312HU55S6 to HD15S6	A	$\leqslant 22000$ (Isc at the connection point) for three-phase power supply	
Drive supply voltage and output voltage				Drive supply voltage	Drive output voltage for motor
			v	200 to 240 single-phase	200 to 240 three-phase
		ATV 312H $\bullet \bullet$ M3	V	200 to 240 three-phase	200 to 240 three-phase
		ATV 312H•・ゃN4	V	380 to 500 three-phase	380 to 500 three-phase
		ATV 312H•••S6	V		525 to 600 three-phase

Connection specifications

(drive terminals for line supply, motor output, DC bus and braking resistor)

Drive terminals		L1, L2, L3, U, V, W, PC/-, PA/+, PB
Maximum wire size and tightening torque	ATV 312H018M2 to H075M2 ATV 312H018M3 to HU15M3	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (AWG 14) } \\ & 0.8 \mathrm{Nm} \end{aligned}$
	ATV 312HU11M2 to HU22M2 ATV 312HU22M3 to HU40M3 ATV 312 H 037 N 4 to HU4ON4 ATV 312H075S6 to HU40S6	$\begin{aligned} & 5 \mathrm{~mm}^{2} \text { (AWG 10) } \\ & 1.2 \mathrm{Nm} \end{aligned}$
	ATV 312HU55M3, HU75M3 ATV 312HU55N4, HU75N4 ATV 312HU55S6, HU75S6	$\begin{aligned} & 16 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 2.5 \mathrm{Nm} \end{aligned}$
	ATV 312HD11M3, HD15M3 ATV 312HD11N4, HD15N4 ATV 312HD11S6, HD15S6	$\begin{aligned} & 25 \mathrm{~mm}^{2} \text { (AWG 3) } \\ & 4.5 \mathrm{Nm} \end{aligned}$
Electrical isolation		Electrical isolation between power and control (inputs, outputs, power supplies)

Introduction:	References: page 28	Dimensions: page 20	Wiring diagrams: page 50	Functions:

Electrical control specifications

Available internal supplies		Protected against short-circuits and overloads: - One $10 \mathrm{~V}=-(0 /+8 \%)$ supply for the reference potentiometer (2.2 to $10 \mathrm{k} \Omega$), maximum current 10 mA - One 24 V --. supply (min. 19 V , max. 30 V) for the control logic inputs, maximum current 100 mA
Analog inputs		Sampling time $<8 \mathrm{~ms}$ Resolution: 10 bits Accuracy: $\pm 4.3 \%$ Linearity: $\pm 0.2 \%$ of the maximum scale value Use: - 100 m maximum with shielded cable - 25 m maximum with unshielded cable
	Al1	One 0 to $10 \mathrm{~V}-\mathrm{-}$ analog voltage input , impedance $30 \mathrm{k} \Omega$, maximum safe voltage 30 V
	Al2	One $\pm 10 \mathrm{~V}$ bipolar voltage analog input, impedance $30 \mathrm{k} \Omega$, maximum safe voltage 30 V
	Al3	One $X-Y$ mA analog current input, X and Y programmable from 0 to 20 mA , with impedance 250Ω
Analog voltage outputs or analog current outputs configurable as logic outputs		2 analog outputs: - 1 analog voltage output (AOV) - 1 analog current output (AOC) configurable as a logic output. These 2 analog outputs cannot be used at the same time
	AOV	0 to $10 \mathrm{~V}=$-- analog voltage output, min. load impedance 470Ω 8 -bit resolution, accuracy $\pm 1 \%$, linearity $\pm 0.2 \%$ of the maximum scale value
	AOC	0 to 20 mA analog current output, max. load impedance 800Ω 8 -bit resolution, accuracy $\pm 1 \%$, linearity $\pm 0.2 \%$ The AOC analog output can be configured as a 24 V logic output, max. 20 mA , min. load impedance $1.2 \mathrm{k} \Omega$ Refresh time $<8 \mathrm{~ms}$
Relay outputs	R1A, R1B, R1C	1 relay logic output, one N/C contact and one N/O contact with common point Minimum switching capacity: 10 mA for $5 \mathrm{~V}=-$ Maximum switching capacity: ■ On resistive load ($\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$ - On inductive load ($\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$ Sampling time $<8 \mathrm{~ms}$ Switching: 100,000 operations
	R2A, R2B	1 relay logic output, one N/C contact, contact open on fault. Minimum switching capacity: 10 mA for $5 \mathrm{~V}=-$ Maximum switching capacity: - On resistive load ($\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ On inductive load ($\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$ Sampling time $<8 \mathrm{~ms}$ Switching: 100,000 operations
LI logic inputs	LI1 to LI6	6 programmable logic inputs, compatible with PLC level 1, standard IEC/EN 61131-2 Impedance $3.5 \mathrm{k} \Omega$ 24 V -- internal or 24 V -- external power supply (min. 19 V , max. 30 V) Max. current: 100 mA Sampling time $<4 \mathrm{~ms}$ Multiple assignment makes it possible to configure several functions on one input (example: LI1 assigned to forward and preset speed 2, LI3 assigned to reverse and preset speed 3)
	Positive logic (Source)	State 0 if < 5 V or logic input not wired State 1 if $>11 \mathrm{~V}$
	Negative logic (Sink)	State 0 if $>19 \mathrm{~V}$ or logic input not wired State 1 if < 13 V
	CLI position	Connection to PLC output (see diagram on page 56)
Maximum I/O wire size and tightening torque		$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (AWG 14) } \\ & 0.6 \mathrm{Nm} \end{aligned}$

Introduction:	References:	Dimensions:	Wiring diagrams:
page 20	page 28	page 50	page56

Electrical control specifications (continued)				
Acceleration and deceleration ramps				Ramp profiles: - Linear, can be adjusted separately from 0.1 to 999.9 s - S, U or customized Automatic adaptation of deceleration ramp time if braking capacities exceeded, possible inhibition of this adaptation (use of a braking resistor)
Braking to a standstill				By DC injection: - By a command on a logic input (LI1 to LI6) - Automatically as soon as the estimated output frequency drops to $<0.5 \mathrm{~Hz}$, period adjustable from 0 to 30 s or continuous, current adjustable from 0 to 1.2 In
Main drive protection and safety features				Thermal protection against overheating Protection against short-circuits between motor phases Input phase loss protection, for three-phase supply Protection against motor phase breaks Overcurrent protection between motor output phases and ground Line supply overvoltage and undervoltage safety features
Motor protection (see page 75)				Thermal protection integrated in the drive by continuous calculation of the $\mathrm{l}^{2 t}$
Dielectric strength	Between ground and power terminals	ATV 312H $\bullet \bullet$ M2 ATV 312H $\bullet \bullet M 3$		2040 V =--
		ATV 312H••๑N4		2410 V =--
		ATV 312H•••S6		2550 V ---
	Between control and power terminals	ATV 312H $\bullet \bullet$ M2 ATV 312H•••M3		2880 V ~
		ATV 312H•••N4		3400 V ~
		ATV 312H•••S6		3600 V ~
Signalling				Display coded by one 4-digit display (messages, values) and 5 status LEDs (current mode, CANopen ${ }^{\text {m" }}$ bus)
Frequency resolution	Display units		Hz	0.1
	Analog inputs		Hz	$\begin{aligned} & \text { Resolution }=((\text { high speed }- \text { low speed }) / 1024) \\ & \text { Min. value }=0.1 \end{aligned}$
Time constant on a change of reference			ms	5

Altivar ${ }^{\text {T" }} 312$
variable speed drives

Communication port specifications

Available protocols		Modbus ${ }^{\text {T" }}$ and CANopen ${ }^{\text {T" }}$ protocols integrated in the drive. Both these protocols can be accessed via a single RJ45 connector on the underside of the drive.
Modbus protocol		
Structure	Connector	RJ45
	Physical interface	RS 485
	Transmission mode	RTU
	Transmission speed	Configurable via the Human-Machine interface, remote display terminals or SoMove ${ }^{\text {Tw }}$ setup software: 4800, 9600 or 19200 bps
	Number of subscribers	31
	Address	1 to 247, configurable via the Human-Machine interface, remote display terminals or SoMove setup software
Services	Functional profiles	CiA 402
	Messaging	Read Holding Registers (03) Write Single Register (06) Write Multiple Registers (16) Read Device Identification (43)
	Communication monitoring	Configurable
CANopen protocol		
Structure	Connector	RJ45
	Network management	Slave
	Transmission speed	Configurable via the Human-Machine interface, remote display terminals or SoMove setup software: $10,20,50,125,250,500 \mathrm{kbps}$ or 1 Mbps
	Number of subscribers	127
	Address (Node ID)	1 to 127, configurable via the Human-Machine interface, remote display terminals or SoMove setup software
Services	Number of PDOs (Process Data Objects)	2 PDOs: - PDO 1: cannot be configured - PDO 6: can be configured
	PDO modes	PDO 1: asynchronous PDO 6: asynchronous, Sync, cyclic asynchronous
	Number of SDOs (Service Data Objects)	1 receive SDO and 1 transmit SDO
	Functional profiles	CiA 402
	Communication monitoring	Node guarding and Heartbeat, Boot-up messages, Emergency messages, Sync and NMT
Diagnostics	Using LEDs	On Human-Machine interface
Description file		An eds file is available on our website www.schneider-electric.com or the "Description of the Motion \& Drives offer" DVD-ROM

Introduction:	References:	Dimensions:	Wiring diagrams:
page 20	page 28	page 50	page56

Specifications (continued), special uses

Altivar ${ }^{\text {T" }} 312$
variable speed drives

Torque specifications (typical curves)

The curves opposite define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors. The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

1 Self-cooled motor: continuous useful torque (1)
2 Force-cooled motor: continuous useful torque
3 Transient overtorque for 60 s
4 Transient overtorque for 2 s
5 Torque in overspeed at constant power (2)

Special uses

Use with a motor with a different power rating to that of the drive
The device can power any motor which has a lower rating than that for which the drive was designed.
For motor ratings slightly higher than that of the drive, check that the current taken does not exceed the continuous output current of the drive.

Testing on a low power motor or without a motor

In a testing or maintenance environment the drive can be checked without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives). This use requires deactivation of motor phase loss detection.

Use of motors in parallel

The drive rating must be greater than or equal to the sum of the currents and powers of the motors to be controlled.
In this case, it is necessary to provide external thermal protection for each motor using probes or thermal overload relays.
If three or more motors are connected in parallel, it is advisable to install a motor choke between the drive and the motors.
See page 48.

Motor switching at the drive output

Switching can be carried out with the drive locked or unlocked. In the case of switching on-the-fly (drive unlocked), the motor is controlled and accelerated until it reaches the reference speed smoothly following the acceleration ramp. This use requires configuration of automatic catching a spinning load ("catch on the fly") and activation of the function which manages the presence of an output contactor.

Note: Depending on the drive rating, downstream ferrite suppressors may be required between the drive and the output contactor (see page 48).

Typical applications: loss of safety circuit at drive output, bypass function, switching of motors connected in parallel.

Recommendations for use: synchronize control of the output contactor with that of a freewheel stop request from the drive on a logic input.
(1) For power ratings $\leqslant 250$ W, less derating is required (20% instead of 50% at very low frequencies).
(2) The nominal motor frequency and the maximum output frequency can be adjusted from 40 to 500 Hz . The mechanical overspeed specifications of the selected motor must be checked with the manufacturer.

Introduction:	References:	Dimensions:	Wiring diagrams:
page 20	page 28	page 50	page56

ATV 312H075M2

ATV 312HU15N4

ATV 312HU30N4

ATV 312HU75N4

Drives (frequency range from 0.5 to 500 Hz)

Moto		Line supply				Altivar 312				
Power indicated on rating plate (1)		Max. curre (2), (3) at U1	at U2	Apparent power at U2	Max. prospective line Isc (4)	Max. continuous output current (In) (1) at U2	Max. transient current for 60 s	Power dissipated at maximum output current (In) (1)	Reference	Weight
kW	HP	A	A	kVA	kA	A	A	W		kg
Single-phase supply voltage: $\mathbf{2 0 0}$ to $\mathbf{2 4 0} \mathrm{V} \mathbf{5 0 / 6 0 ~ H z}$, with integrated EMC filter (3) (5) (6)										
0.18	0.25	3.0	2.5	0.6	1	1.5	2.3	24	ATV 312H018M2	1.500
0.37	0.5	5.3	4.4	1	1	3.3	5	41	ATV 312H037M2	1.500
0.55	0.75	6.8	5.8	1.4	1	3.7	5.6	46	ATV 312H055M2	1.500
0.75	1	8.9	7.5	1.8	1	4.8	7.2	60	ATV 312H075M2	1.500
1.1	1.5	12.1	10.2	2.4	1	6.9	10.4	74	ATV 312HU11M2	1.800
1.5	2	15.8	13.3	3.2	1	8	12	90	ATV 312HU15M2	1.800
2.2	3	21.9	18.4	4.4	1	11	16.5	123	ATV 312HU22M2	3.100
Three-phase supply voltage: $\mathbf{2 0 0}$ to $\mathbf{2 4 0} \mathrm{V} \mathbf{5 0 / 6 0 ~ H z}$, without EMC filter (3) (7)										
0.18	0.25	2.1	1.9	0.7	5	1.5	2.3	23	ATV 312H018M3	1.300
0.37	0.5	3.8	3.3	1.3	5	3.3	5	38	ATV 312H037M3	1.300
0.55	0.75	4.9	4.2	1.7	5	3.7	5.6	43	ATV 312H055M3	1.300
0.75	1	6.4	5.6	2.2	5	4.8	7.2	55	ATV 312H075M3	1.300
1.1	1.5	8.5	7.4	3	5	6.9	10.4	71	ATV 312HU11M3	1.700
1.5	2	11.1	9.6	3.8	5	8	12	86	ATV 312HU15M3	1.700
2.2	3	14.9	13	5.2	5	11	16.5	114	ATV 312HU22M3	1.700
3	-	19.1	16.6	6.6	5	13.7	20.6	146	ATV 312HU30M3	2.900
4	5	24.2	21.1	8.4	5	17.5	26.3	180	ATV 312HU40M3	2.900
5.5	7.5	36.8	32	12.8	22	27.5	41.3	292	ATV 312HU55M3	6.400
7.5	10	46.8	40.9	16.2	22	33	49.5	388	ATV 312HU75M3	6.400
11	15	63.5	55.6	22	22	54	81	477	ATV 312HD11M3	10.500
15	20	82.1	71.9	28.5	22	66	99	628	ATV 312HD15M3	10.500

Three-phase supply voltage: $\mathbf{3 8 0}$ to $\mathbf{5 0 0} \mathrm{V} \mathrm{50/60} \mathrm{~Hz}$, with integrated EMC filter (3) (5) (6)

0.37	0.5	2.2	1.7	1.5	5	1.5	2.3	32	ATV 312H037N4	1.800
0.55	0.75	2.8	2.2	1.8	5	1.9	2.9	37	ATV 312H055N4	1.800
0.75	1	3.6	2.7	2.4	5	2.3	3.5	41	ATV 312H075N4	1.800
1.1	1.5	4.9	3.7	3.2	5	3	4.5	48	ATV 312HU11N4	1.800
1.5	2	6.4	4.8	4.2	5	4.1	6.2	61	ATV 312HU15N4	1.800
2.2	3	8.9	6.7	5.9	5	5.5	8.3	79	ATV 312HU22N4	3.100
3	-	10.9	8.3	7.1	5	7.1	10.7	125	ATV 312HU30N4	3.100
4	5	13.9	10.6	9.2	5	9.5	14.3	150	ATV 312HU40N4	3.100
5.5	7.5	21.9	16.5	15	22	14.3	21.5	232	ATV 312HU55N4	6.500
7.5	10	27.7	21	18	22	17	25.5	269	ATV 312HU75N4	6.500
11	15	37.2	28.4	25	22	27.7	41.6	397	ATV 312HD11N4	11.000
15	20	48.2	36.8	32	22	33	49.5	492	ATV 312HD15N4	11.000
Three-phase supply voltage: $\mathbf{5 2 5}$ to $\mathbf{6 0 0} \mathbf{V} \mathbf{5 0 / 6 0} \mathbf{~ H z , ~ w i t h o u t ~ E M C ~ f i l t e r ~}(3)(8)$										
0.75	1	2.8	2.4	2.5	5	1.7	2.6	36	ATV 312H075S6	1.700
1.5	2	4.8	4.2	4.4	5	2.7	4.1	48	ATV 312HU15S6	1.700
2.2	3	6.4	5.6	5.8	5	3.9	5.9	62	ATV 312HU22S6	2.900
4	5	10.7	9.3	9.7	5	6.1	9.2	94	ATV 312HU40S6	2.900
5.5	7.5	16.2	14.1	15	22	9	13.5	133	ATV 312HU55S6	6.200
7.5	10	21.3	18.5	19	22	11	16.5	165	ATV 312HU75S6	6.200
11	15	27.8	24.4	25	22	17	25.5	257	ATV 312HD11S6	10.000
15	20	36.4	31.8	33	22	22	33	335	ATV 312HD15S6	10.000

[^0]| Introduction: | Specifications: | Dimensions: | Wiring diagrams: |
| :--- | :--- | :--- | :--- |
| page 20 | page 22 | page 50 | page56 |

Altivar ${ }^{\text {T" }} 312$
variable speed drives
Accessories, documentation, replacement parts

VW3 A9 804

TM200 RSRCEMC

Accessories				
Description	For drives	Sold in lots of	Reference	Weight kg
Plates for mounting on DIN rail, width 35 mm	ATV 312H018M2 to H075M2 ATV 312H018M3 to H075M3	-	VW3 A9 804	0.290
	ATV 312HU11M2, HU15M2 ATV 312HU11M3 to HU22M3 ATV 312H037N4 to HU15N4 ATV 312H075S6, HU15S6	-	VW3 A9 805	0.385
UL Type 1 conformity kits Mechanical device for mounting to the lower part of the drive. For direct connection of cables to the drive via tubes or cable glands	ATV 312H018M2 to H075M2	-	VW3 A31812	0.400
	ATV 312H018M3 to H075M3	-	VW3 A31811	0.400
	ATV 312HU11M3, HU15M3	-	VW3 A31813	0.400
	ATV 312HU11M2, HU15M2 ATV 312HU22M3 ATV 312H037N4 to HU15N4 ATV 312H075S6, HU15S6	-	VW3 A31814	0.500
	ATV 312HU22M2 ATV 312HU30M3, HU40M3 ATV 312HU22N4 to HU40N4 ATV 312HU22S6, HU40S6	-	VW3 A31815	0.500
	ATV 312HU55M3, HU75M3 ATV 312HU55N4, HU75N4 ATV 312HU55S6, HU75S6	-	VW3 A31816	0.900
	ATV 312HD11M3, HD15M3 ATV 312HD11N4, HD15N4 ATV 312HD11S6, HD15S6	-	VW3 A31817	1.200
Shielding connection clamps Attachment and grounding of the cable shielding Pack of 25 clamps including: - 20 clamps for $\varnothing 4.8 \mathrm{~mm}$ cable - 5 clamps for $\varnothing 7.9 \mathrm{~mm}$ cable	ATV 312H••••๑	25	TM200 RSRCEMC	-
Documentation				
Description			Reference	Weight kg
"Description of the Motion \& Drives offer" DVD-ROM features (1): - Technical documentation (programming manuals, installation manuals, quick reference guides) - SoMove lite setup software - Catalogs - Brochures			VW3 A8 200	0.100

Replacement parts			
Description	For drives	Reference	Weight kg
ATV 312 control I/O card	ATV 312H•••••	VW3 A312 01	0.200
Fans	ATV 312HU11M2, HU15M2 ATV 312HU11M3, HU22M3 ATV 312H037N4, HU15N4 ATV 312H075S6, HU15S6	VZ3 V3 101	0.200
	ATV 312HU22M2 ATV 312HU30M3, HU40M3 ATV 312HU22N4, HU40N4 ATV 312HU22S6, HU40S6	VZ3 V3 102	0.200
	ATV 312HU55M3, HU75M3 ATV 312HU55N4, HU75N4 ATV 312HU55S6, HU75S6	VZ3 V3 103	0.200
	ATV 312HD11M3, HD15M3 ATV 312HD11N4, HD15N4 ATV 312HD11S6, HD15S6	VZ3 V3 104	0.300

[^1]| Introduction: | Specifications: | Dimensions: | Wiring diagrams: |
| :--- | :--- | :--- | :--- |
| page 20 | page 22 | page 50 | page56 |

Communication buses and networks

Example of configuration on Modbus serial link

Example of configuration on CANopen machine bus

[^2]
Introduction

The Altivar ${ }^{\text {™ }} 312$ drive is designed to meet the configuration requirements found in the main industrial communication installations.
It includes the Modbus ${ }^{\text {Tm }}$ and CANopen ${ }^{\text {Tm }}$ communication protocols as standard. It can also be connected to other industrial communication buses and networks using one of the communication cards or modules that are available as options.

Standard configuration

The Altivar 312 drive is equipped with a control I/O card 1 which integrates:
■ I/O terminals, comprising:
\square Six logic inputs: LI1 to LI6
\square Three analog inputs: Al1 to AI3
\square Two analog outputs: AOV and AOC (2)

- Two relay outputs: R1 and R2
- A Modbus/CANopen communication port, that is accessed on an RJ45 connector

The Modbus/CANopen communication port is specifically for controlling the drive via a PLC or another type of controller.
It is also used for connecting dialog and configuration tools:

- Remote display terminal
- Remote graphic display terminal

■ SoMove ${ }^{\text {™ }}$ setup software
■ SoMove Mobile software for mobile phones

- Simple Loader and Multi-Loader configuration tools

Communication cards for industrial applications

Several communication cards for industrial applications 2 are available as options.
These cards are used in place of the drive's control I/O card 1 (1)
The following communication cards are available:

- CANopen Daisy chain card (optimized solution for daisy chain connection to

CANopen machine bus, see page 34)
■ DeviceNet ${ }^{\text {t" }}$ card

- Profibus ${ }^{\text {TM }}$ DP card

Communication modules

The Altivar 312 drive can be connected to other communication buses and networks via modules that are available as options:

- Modbus TCP network via the Ethernet/Modbus bridge
- Fipio ${ }^{\text {TM }}$ bus via the Fipio/Modbus gateway
(1) To reduce installation costs when replacing the control I/O card 1 with a communication card 2, ATV $312 \mathrm{H} \bullet \bullet \bullet M 2$ and ATV $312 \mathrm{H} \bullet \bullet \bullet N 4$ drives can be ordered without a control I/O card. See page 28.
(2) These two outputs cannot be used at the same time.
Functions: Specifications: References

Altivar" 312
 variable speed drives
 Communication buses and networks

Functions

[^3]Specifications of the CANopen ${ }^{\text {Tw }}$ Daisy chain card VW3 A312 08 (1)

\begin{tabular}{|c|c|c|}
\hline Structure \& Connector \& \begin{tabular}{l}
4 connectors: \\
1 removable screw terminal block: \\
3 logic inputs: LI1 to LI3 \\
- 2 analog inputs: AI2 and AI3 \\
- 1 relay output: R2 \\
- 2 RJ45 connectors for daisy-chain connection to the CANopen machine bus \\
1 RJ45 connector for connection to the Modbus serial link
\end{tabular} \\
\hline \& \& (1) The other specifications of the CANopen Daisy chain card are identical to those of the drive's CANopen protocol. See page 26. \\
\hline Specificati \& DeviceNet \({ }^{\text {Tm }}\) card \& A12 09 \\
\hline Structure \& Connector \& \begin{tabular}{l}
3 connectors: \\
1 removable screw terminal block: \\
- 3 logic inputs: LI1 to LI3
2 analog inputs: AI2 and Al3

1 relay output: R2.

1 five-way screw connector, 5.08 pitch, for connection to the DeviceNet network

- 1 RJ45 connector for connection to the Modbus serial link
\end{tabular}

\hline \& Transmission speed \& $125 \mathrm{kbps}, 250 \mathrm{kbps}$ or 500 kbps , configurable using switches on the card

\hline \& Address \& 1 to 63, configurable using switches on the card

\hline Services \& Periodic variables \& ODVAAC drive type profile 20, 21, 70 and 71 ATV 312 native profile (CiA 402) 100 and 101

\hline \& Exchange mode \& Inputs: by polling, change of state, periodic Outputs: by polling

\hline \& Auto Device Replacement \& No

\hline \& Communication monitoring \& | Can be inhibited |
| :--- |
| Time out can be set via the DeviceNet network configurator |

\hline Diagnostics \& Using LEDs \& One two-tone LED on the card: "MNS" (status)

\hline Description file \& \& An .eds file is available on our website www.schneider-electric.com or on the "Description of the Motion \& Drives offer" DVD-ROM

\hline
\end{tabular}

Specifications (continued), references

Altivar" 312

variable speed drives
Communication buses and networks

Specifications of the Profibus ${ }^{\text {™ }}$ DP card VW3 A312 07				
Structure	Connector	3 connectors: - 1 removable screw terminal block: - 3 logic inputs: LI1 to LI3 - 2 analog inputs: AI2 and AI3 - 1 relay output: R2. - 1 screw terminal block for connection to the Profibus DP bus - 1 RJ45 connector for connection to the Modbus ${ }^{\text {" }}$ serial link		
	Transmission speed	$9600 \mathrm{bps}, 19.2 \mathrm{kbps}, 93.75 \mathrm{kbps}, 187.5 \mathrm{kbps}, 500 \mathrm{kbps}, 1.5 \mathrm{Mbps}, 3 \mathrm{Mbps}, 6 \mathrm{Mbps}$ or 12 Mbps		
	Address	1 to 126, configurable using switches on the card		
Services	Periodic variables	Input: 4 PKW and 2 PZDOutput: 4 PKW and 2 PZD		
	Messaging	Via PKW periodic variables		
	Functional profile	IEC 61800-7 (CiA 402)		
Diagnostics	Using LEDs	2 LEDs on the card: "ST" (status) and "DX" (data exchange)		
Description file		A gsd file is available on our website www.schneider-electric.com or on the "Description of the Motion \& Drives offer" DVD-ROM		
Communication card references (1)				
		Designation	References	Weight kg
		CANopen"' Daisy chain communication card for daisy chaining (see page 34)	VW3 A312 08	0.200
		DeviceNet communication card	VW3 A312 09	0.200
		Profibus DP communication card	VW3 A312 07	0.200

(1) To reduce installation costs when replacing the control I/O card with a communication card, ATV 312H・ゃ॰M2 and ATV $312 H \bullet \bullet \bullet N 4$ drives can be ordered without a control I/O card. See page 28.

Altivar" ${ }^{\text {r" }} 312$ variable speed drives

Communication buses and networks

	Modbus ${ }^{\text {TM }}$ serial link						
	Accessories for connection via splitter boxes and RJ45 connectors						
	Description		Item no.	Length m	Unit reference	Weight kg	
	Modbus splitter box 10 RJ45 connectors and 1 screw terminal block		1	-	LU9 GC3	0.500	
흥	Cables for Modbus	erial link	2	0.3	VW3 A8 306 R03	0.025	
Σ	equipped with 2 RJ	nnectors		1	VW3 A8 306 R10	0.060	
$\square-2$ -2 -3				3	VW3 A8 306 R30	0.130	
	Modbus T-connecto		3	0.3	VW3 A8 306 TF03	-	
	(with integrated cable)			1	VW3 A8 306 TF10	-	
	Modbus line terminators	$\begin{aligned} & \mathrm{R}=120 \Omega \\ & \mathrm{C}=1 \mathrm{nf} \end{aligned}$	4	-	VW3 A8 306 RC	0.200	
	for RJ45	$\mathrm{R}=150 \Omega$	4	-	VW3 A8 306 R	0.200	
ATV 312	connector (3) (4)						
Example of Modbus serial link architecture, connections via splitter boxes and RJ45 connectors	Accessories for connection via tap junctions						
	Description		Item no.	Length m	Unit reference	Weight kg	
	Modbus subscriber socket Two 15-way female SUB-D connectors and 2 screw terminal blocks, RC line terminator To be connected using cable VW3 A8 306		5	-	TSX SCA 62	0.570	
	Modbus junction box 3 screw terminal blocks, RC line terminator To be connected using cable VW3 A8 306 D30		6	-	TSX SCA 50	0.520	
	RS 485 double shielded twisted pair Modbus cables Supplied without connector		7	100	TSX CSA 100	-	
$8-\quad-8 \quad-9$			200	TSX CSA 200	-		
			500	TSX CSA 500	-		
	Modbus drop cable 1 RJ45 connector and 1×15-way male SUB-D connector for TSX SCA 62			8	3	VW3 A8 306	0.150
ATV 312 Example of Modbus serial link architecture, connections via tap junctions	Modbus drop cable 1 RJ45 connector and one stripped end			9	3	VW3 A8 306 D30	0.150
	Modbus line terminators for screw terminal block(3) (4)	$\begin{aligned} & \mathrm{R}=120 \Omega \\ & \mathrm{C}=1 \mathrm{nf} \end{aligned}$	10	-	VW3 A8 306 DRC	0.200	
		$\mathrm{R}=150 \Omega$	10	-	VW3 A8 306 DR	0.200	
	(1) Please refer to the "M340 Automation platform" catalog. (2) Cable dependent on the type of controller or PLC. (3) Depends on the bus architecture. Please refer to the "Soft starters and variable speed drives" catalog. (4) Sold in lots of 2 .						
TSX SCA 62 TSX SCA 50							

Introduction:	Functions:	Specifications:
page 30	page 31	page 31

Communication buses and networks

Introduction:	Functions:	Specifications:
page 30	page 31	page 31

Altivar ${ }^{\text {r" }} 312$
 variable speed drives

Communication buses and networks

Introduction, references

Altivar ${ }^{\text {rm }} 312$
variable speed drives
Option: dialog tools

Remote display terminal with cover open

Remote display terminal with cover closed

[^4]
Remote display terminal (1)

This terminal is used to locate the human-machine interface of the Altivar ${ }^{\text {rM }} 312$ drive remotely on the door of an enclosure with IP 54 or IP 65 protection.
It is used to:

- Control, adjust and configure the drive remotely
- Display the drive status and faults remotely

Its maximum operating temperature is $50^{\circ} \mathrm{C}$.

Description

1 4-digit display
2 Navigation $\boldsymbol{\Delta}$, and selection ENT, ESC keys
3 Motor local control keys:

- RUN: starts the motor
- FWD/REV: reverses the direction of rotation of the motor
- STOP/RESET: stops the motor/resets drive faults

4 Operating mode selection key MODE.
5 Cover for optional access to the motor local control keys.

References Description	Degree of protection	Length \mathbf{m}	Reference	Weight kg
Remote display terminals A remote cable must be provided, VW3 A1 104R•e	IP 54	-	VW3 A1 006	0.250
Remote cables equipped with 2 RJ45 connectors	IP 65	-	VW3 A1 007	0.275

Remote graphic display terminal (2)

This graphic display terminal, common to all the variable speed drive ranges, provides a user-friendly interface for configuration, debugging and maintenance. Its main functions are as follows:
■ The graphic screen displays 8 lines of 24 characters of plain text

- The navigation button provides quick and easy access to the drop-down menus

■ It is supplied with six languages installed as standard (Chinese, English, French,
German, Italian and Spanish). The available languages can be modified using the Multi-Loader configuration tool (VW3 A8 121).
The maximum operating temperature of the terminal is $60^{\circ} \mathrm{C}$ and it has IP 54 protection.

Description

1 Graphic display:

- 8 lines of 24 characters, 240×160 pixels, large digit display

2 Function keys (not operational on the Altivar 312)
3 Navigation button: rotate \pm : goes to the next/previous line, increases/decreases the value - press: saves the current value (ENT).
ESC key: aborts a value, a parameter or a menu to return to the previous selection.
4 Motor local control keys:

- RUN: starts the motor
- STOP/RESET: stops the motor/resets drive faults
- FWD/REV: reverses the motor direction of rotation

5 Remote graphic display terminal
6 Remote cable
7 Female/female RJ45 adaptor

References				
Description	Item no.	Length m	Reference	Weight kg
Remote graphic display terminal A remote cable, VW3 A1 104R•••, and an RJ45 adaptor, VW3 A1 105, must be provided	5	-	VW3 A1 101	-
Remote cables equipped with 2 RJ45 connectors	6	1	VW3 A1 104R10	0.050
		3	VW3 A1 104R30	0.150
		5	VW3 A1 104R50	0.250
		10	VW3 A1 104R100	0.500
Female/female RJ45 adaptor	7	-	VW3 A1 105	0.010

(1) If an Altivar 31 drive is replaced by an Altivar 312 drive, the remote display terminal VW3 A1 101 can be used. Please consult the quick reference guide for this terminal, which is available on our website www.schneider-electric.com.
(2) The software version of the graphic display terminal must be \geqslant V1.1.IE19. It can be updated using the Multi-Loader configuration tool (VW3 A8 121). See page 37.

Configuration with SoMove Mobile software for mobile phones

Configuration with Simple Loader configuration tool connected to the ATV 312

Configuration with Multi-Loader configuration tool connected to the ATV 312

SoMove ${ }^{T w}$ setup software

SoMove setup software for PC is used to prepare drive configuration files.
The PC can be connected to the drive:
■ Directly, using the USB/RJ45 cable (TCSM CNAM 3M002P)
$■$ Using a Bluetooth ${ }^{\circledR}$ wireless connection, via the Modbus ${ }^{\text {™ }}$ Bluetooth ${ }^{\circledR}$ adaptor (VW3 A8 114)
See page 38.

SoMove Mobile software for mobile phones (1)

SoMove Mobile software can be used to edit drive configurations on a mobile phone. The configurations can be saved, imported from a PC, exported to a PC or a drive equipped with the Modbus-Bluetooth ${ }^{\circledR}$ adaptor (VW3 A8 114).
The SoMove Mobile software and drive configuration files can be downloaded from our website www.schneider-electric.com

References		
Description	Reference	Weight kg
SoMove Mobile software for mobile phones (1) Can be downloaded from our website www.schneider-electric.com.	-	
Modbus-Bluetooth ${ }^{\text {® }}$ adaptor features: - 1 Bluetooth ${ }^{\circledR}$ adaptor (range 10 m , class 2) with RJ45 connector $-1 \times 0.1 \mathrm{~m}$ cable with $2 \times \mathrm{RJ} 45$ connectors - (2)	VW3 A8 114	0.155

Simple Loader and Multi-Loader configuration tools

The Simple Loader tool enables one powered-up drive's configuration to be duplicated on another powered-up drive. It is connected to the drive's RJ45 communication port.

The Multi-Loader tool enables several configurations to be copied from a PC or a powered-up drive and loaded on another powered-up drive.
It is connected to:

- APC via a USB port

■ The drive's RJ45 communication port

References Description	Reference	Weight kg
Simple Loader configuration tool Supplied with a connection cable equipped with 2 RJ45 connectors.	VW3 A8 120	-
Multi-Loader configuration tool	VW3 A8 121	-

Supplied with:

- 1 cable equipped with 2 RJ45
connectors
- 1 cable equipped with one type A USB
connector and one mini B USB connector
-1×2 GB SD memory card
- 1 x female/female RJ 45 adaptor
- 4 AA/LR6 1.5 V batteries
(1) SoMove Mobile software requires a mobile phone with minimum features, please consult our website www.schneider-electric.com
(2) It also includes other elements for connecting compatible Schneider Electric devices.

SoMove start page

Example of connecting SoMove software to an ATV 12 drive

SoMove control panel

Introduction

SoMove ${ }^{\text {Tw }}$ is user-friendly setup software for PC designed for configuring the following Schneider Electric motor control devices:
■ ATV 12, ATV 312, ATV 31, ATV 32, ATV 61 and ATV 71 drives

- ATS 22 starters

■ TeSys ${ }^{\text {™ }}$ U starter-controllers

- TeSys T motor management system

■ Lexium ${ }^{\text {T" }} 32$ servo drives
SoMove software incorporates various functions for the device setup phases, such as:

- Configuration preparation
- Start-up
- Maintenance

To facilitate setup and maintenance, SoMove software can use a direct USB/RJ45 cable link or a Bluetooth ${ }^{\circledR}$ wireless link.
SoMove software is also compatible with the Multi-Loader configuration tool and SoMove Mobile software for mobile phones.
These tools can save a significant amount of time when loading, duplicating or editing configurations on a device.

SoMove software and all the DTMs (Device Type Managers) associated with the devices can be downloaded from our website www.schneider-electric.com.

Functions

Configuration preparation in disconnected mode

SoMove software has a genuine disconnected mode which provides access to all the device parameters. This mode can be used to generate the device configuration. The configuration can be saved, printed and exported to office automation software.

SoMove software also checks the consistency of the parameters, validating the configurations created in disconnected mode.

A large number of functions are available in disconnected mode, in particular: - The device configuration software wizard

- The configuration comparison function
- Saving, copying, printing and creating configuration files for export to MultiLoader, SoMove Mobile or Microsoft Excel ${ }^{\circledR}$ tools, and sending configurations by e-mail

Setup

When the PC is connected to the device, SoMove software can be used for:
■ Transferring the generated configuration onto the device

- Adjustment and monitoring, which includes such functions as:
\square The oscilloscope
\square Display of communication parameters
- Easy control via the control panel user interface
- Saving the final configuration

Maintenance

In order to simplify maintenance operations, SoMove software can be used to:

- Compare the configuration of a device currently being used with a configuration saved on the PC
- Transfer a configuration to a device

■ Compare oscilloscope curves

- Save oscilloscope curves and faults
References: Compatibility:

SoMove oscilloscope function

SoMove Safety function

Functions (continued)

User interface
SoMove ${ }^{\text {"" }}$ software provides fast, direct access to all information on the device via five tabs:

- My Device: Displays all the device information (type, reference, software versions, option cards, etc.)
- Parameters: Displays all the device adjustment parameters, shown in a table or in the form of diagrams
- Faults: Displays a list of the faults that may be encountered with the device, the fault log and any current faults or alarms
- Monitoring: Provides a realtime display of the device status, its I/O and all the monitoring parameters. It is possible to create your own control panel by selecting your parameters and how they are to be represented.
- Oscilloscope: Provides a high-speed oscilloscope (for recording traces in the device) or low-speed oscilloscope (for recording traces in the software for devices that do not have an integrated oscilloscope)

SoMove's user interface automatically adapts to the specific configured device by offering additional tabs:

- Safety: For configuring the Safety functions on ATV 32 variable speed drives and Lexium 32 servo drives. It can also be used to:
- Display the I/O
- Compile and print a report
- ATVLogic: For accessing the ATV 32 drive's programmable function blocks. It can also be used to:
- Develop a program and transfer it to the drive
- Display and debug the program already on the drive
- Auto-tuning: For accessing the servo control settings for the three different operating modes of the Lexium ${ }^{\text {mim }} 32$ servo drive's auto-tuning function:
\square Automatic mode for quick setup, designed for simple applications
- Semi-automatic mode for quick setup, with the option of optimizing the servo drive/servo motor combination (access to the mechanical and dynamic behavior parameters)
- Expert mode for optimizing the adjustment parameters, designed for complex applications

Connections

Modbus serial link
The PC running SoMove software can be connected directly via the RJ45 connector on the device and the USB port on the PC using the USB/RJ45 cable.

See the product references on page 40 .

Bluetooth ${ }^{\circledR}$ wireless link

SoMove software can communicate via Bluetooth ${ }^{\circledR}$ wireless link with any Bluetooth ${ }^{\oplus}$ enabled device.

If the device is not Bluetooth ${ }^{\oplus}$ enabled, use the Modbus ${ }^{\text {"" }}$-Bluetooth ${ }^{\circledR}$ adaptor. This adaptor is connected to the terminal port or the Modbus network port on the device. It has a 20 m range (class 2).

If the PC does not have Bluetooth ${ }^{\ominus}$ technology, use the USB-Bluetooth ${ }^{\ominus}$ adaptor.
See the product references on page 40 .

SoMove setup software

TCSW AAC13FB: Bluetooth ${ }^{\circledR}$ adaptor
References
Description
SoMove ${ }^{\text {Tw }}$ Lite setup software
Includes:
SoMove setup software for PC in English, French, German,
Italian, Spanish and Chinese
DTMs (Device Type Managers) and technical
documentation for variable speed drives, starters and servo
motors
USB/RJ45 cable TCSM CNAM 3M002P

Used to connect a PC to the device.
This cable is 2.5 m long and has a USB connector (PC end) and an RJ45 connector (device end).

Modbus $^{\text {T" } / \text { /Uni-Telway }}{ }^{\text {Tw }}$-Bluetooth ${ }^{\circledR}$ adaptor	TCSW AAC13FB	0.032
Used to enable any non-Bluetooth ${ }^{\circledR}$ device to communicate		

Used to enable any non-Bluetooth ${ }^{\circledR}$ device to communicate
via Bluetooth ${ }^{\circledR}$ wireless link (2).
Includes:

- 1 Bluetooth ${ }^{\circledR}$ adaptor (range 20 m , class 2) with an RJ45
connector
■ For SoMove: $1 \times 0.1 \mathrm{~m}$ cordset with $2 \times \mathrm{RJ} 45$
connectors
■ For TwidoSuite ${ }^{\text {Tw }}: 1 \times 0.1 \mathrm{~m}$ cordset with
1 RJ45 connector and 1 mini DIN connector

USB-Bluetooth ${ }^{\circledR}$ adaptor for PC	VW3 A8 115
Used to enable any non-Bluetooth ${ }^{\circledR}$ PC to communicate via	
Bluetooth $^{\circledR}$ wireless link (3).	
It connects to a USB port on the PC.	
Range 10 m, class 2	

(1) Available on our website www.schneider-electric.com.
(2) Required for the following devices:

- ATV 12, ATV 312, ATV 31, ATV 61 and ATV 71 drives
- ATS 22 starters
- TeSys ${ }^{\text {me }}$ U starter-controllers
- TeSys T motor management system
- Lexium ${ }^{\text {™ }} 32$ servo drives
(3) Check the manufacturer's specifications.
Introduction: \quad Functions: \quad Compatibility:

Compatibility of SoMove ${ }^{\text {TM }}$ software with specific devices		
Device	Range	Version of software on the device
Variable speed drive	ATV 12, ATV 312, ATV32	$\geqslant 1.0$
	ATV 31	$\geqslant 1.1$
	ATV 61, ATV 71	$\geqslant 1.6$
Starter	ATS 22	$\geqslant 1.0$
Starter-controller	TeSys U	$\geqslant 1.0$
Motor management system	TeSys T	$\geqslant 1.0$
Servo drive	Lexium 32	$\geqslant 1.0$

Environments

SoMove operates in the following PC environments and configurations:
■ Microsoft Windows ${ }^{\circledR} 7$ Professional (1)

- Microsoft Windows ${ }^{\circledR}$ XP Professional SP3

■ Microsoft Windows ${ }^{\circledR}$ Vista Business SP2

- Pentium IV (or equivalent), 1 GHz , hard disk with 1 GB available space, 1 GB of RAM (minimum configuration)
(1) Please contact our Customer Care Center.

Altivar ${ }^{\text {Tw }} 312$

variable speed drives
Option: braking resistors

Introduction				
		The resistor enables the Altivar ${ }^{\text {T" }} 312$ drive to operate while braking to a standstill or during slowdown braking, by dissipating the braking energy. Two types of resistor are available: ■ Enclosed model (IP 20 casing) designed to comply with the EMC standard and protected by a temperature-controlled switch or thermal overload relay. This model enables maximum transient braking torque. The resistors are designed to be mounted on the outside of the enclosure, but should not inhibit natural cooling. Air inlets and outlets must not be obstructed in any way. The air must be free of dust, corrosive gas and condensation. Non-protected model (IP 00) for lower power ratings only.		
		Machines with high inertia, driving loads and machines with fast cycles.		
General specifications				
Type of braking resistor			VW3 A7 723 to VW3 A7 725	VW3 A7 701 to VW3 A7 705
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	40	0 to + 50
	Storage	${ }^{\circ} \mathrm{C}$	-25 to +70	
Degree of protection of the casing			IP 00	IP 20
Thermal protection			None	Via temperature-controlled switch or via the drive
Temperature controlled switch (1)	Tripping temperature	${ }^{\circ} \mathrm{C}$	-	120
	Max. voltage - max. current		-	$250 \mathrm{~V} \sim-1 \mathrm{~A}$
	Min. voltage - min. current		-	$24 \mathrm{~V}=-\mathrm{-}-0.1 \mathrm{~A}$
	Maximum switch resistance	$\mathrm{m} \Omega$	-	60
Operating factor for the dynamic brake transistors			The average power that can be dissipated at $40^{\circ} \mathrm{C}$ from the resistor into the casing is determined for a load factor during braking that corresponds to most common applications. The dynamic brake transistor is sized so that it can tolerate: - The nominal motor power continuously - 150% of the nominal motor power for 60 s	

(1) The switch must be connected in the sequence (use for signalling or in line contactor control),

Load factor and determining the nominal power

Speed

Load factor: $\frac{\mathrm{t}}{T}$
t: braking time in s
T : cycle time in s

Chart 1

Graph of the average power as a function of the braking torque for a load factor

Example:

Motor power $\mathrm{Pm}=4 \mathrm{~kW}$
Motor efficiency h $=0.85$
Braking torque $\mathrm{Tb}=0.6 \mathrm{Tn}$
Braking time $t=10 \mathrm{~s}$
Cycle time T = 50 s
Load factor $\mathrm{fm}=\frac{\mathrm{t}}{\mathrm{T}}=20 \%$
Use chart 1 to determine coefficient K1 corresponding to a braking torque of 0.6 Tn and a load factor of 20\%: $\mathrm{K} 1=0.06$

The average power that can be dissipated at $40^{\circ} \mathrm{C}$ from the resistor into the casing is determined for a load factor during braking that corresponds to most common applications. This load factor is defined in the table above.
For a specific application (example: handling), the nominal power of the resistor must be redefined incorporating the new load factor.

Chart 2
Permissible resistor overload as a function of time (characteristic curve)

Use chart 2 to determine coefficient K2 corresponding to a braking time of 10 seconds.
$K 2=7$
The nominal power of the resistor (Pn) must be greater than:
$\mathrm{Pn}=\mathrm{Pm} \times \mathrm{K} 1 \times \eta\left(1+\frac{1}{\mathrm{~K} 2 \times \mathrm{fm}}\right)=4.10^{3} \times 0.06 \times 0.8\left(1+\frac{1}{7 \times 0.2}\right)=350 \mathrm{~W}$

Option: braking resistors

VW3 A7 723

VW3 A7 701

For drives	Minimum resistor value(1)	Ohmic value	Average power available at		Reference	Weight
			$40^{\circ} \mathrm{C}$ (2)	$50^{\circ} \mathrm{C}$		
	Ω	Ω	W	W		kg
Non-protected braking resistors						
ATV 312H018M2 to H075M2	40	100	32	28	VW3 A7 723	0.600
ATV 312HU11M2, HU15M2	27					
ATV 312H018M3 to H075M3	40					
ATV 312HU11M3, HU15M3	27					
ATV 312H037N4 to H075N4	80					
ATV 312HU11N4 to HU22N4	54					
ATV 312H075S6	96					
ATV 312HU15S6, HU22S6	64					
ATV 312HU30N4	55	100	40	35	VW3 A7 725	0.850
ATV 312HU40N4	36					
ATV 312HU40S6	44					
ATV 312HU22M2, ATV 312HU22M3	25	68	32	28	VW3 A7 724	0.600
ATV 312HU30M3	16					

Protected braking resistors						
ATV 312H018M2 to H075M2	40	100	58	50	VW3 A7 701	2.000
ATV 312HU11M2, HU15M2	27					
ATV 312H018M3 to H075M3	40					
ATV 312HU11M3, HU15M3	27					
ATV 312H037N4 to H075N4	80					
ATV 312HU11N4 to HU22N4	54					
ATV 312HU22M2, ATV 312HU22M3	25	60	115	100	VW3 A7 702	2.400
ATV 312HU30M3	16					
ATV 312HU30N4	55	100	58	50	VW3 A7 701	2.000
ATV 312HU40N4	36					
ATV 312HU55N4	29	60	115	100	VW3 A7 702	2.400
ATV 312HU75N4	19					
ATV 312HU55S6	34					
ATV 312HU75S6	23					
ATV 312HU40M3	16	28	231	200	VW3 A7 703	3.500
ATV 312HD11N4, HD15N4	20					
ATV 312HD11S6, HD15S6	24					
ATV 312HU55M3, HU75M3	8	15	1154	1000	VW3 A7 704	11.000
ATV 312HD11M3, HD15M3	5	10 (3)	1154	1000	VW3 A7 705	11.000

(1) Depends on the drive rating.
(2) Power that can be dissipated by the resistor at the maximum temperature of $115^{\circ} \mathrm{C}$, corresponding to a maximum temperature rise of $75^{\circ} \mathrm{C}$ in a $40^{\circ} \mathrm{C}$ environment.
(3) Ohmic value obtained as a function of the connection described in the resistor operating instructions.

Altivar ${ }^{\text {T" }} 312$

variable speed drives
Option: line chokes

Introduction		
		Line chokes provide improved protection against overvoltages on the line supply and reduce harmonic distortion of the current produced by the drive.
		The recommended chokes limit the line current.
		They have been developed in line with standard IEC 61800-5-1 (VDE 0160 leve
		high-energy overvoltages on the line supply).
		The inductance values are defined for a voltage drop between 3% and 5% of the
		The use of line chokes is recommended in particular for ATV $312 \mathrm{H} \bullet \bullet \bullet$ M2, ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 3$ and ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{N} 4$ drives under the following circumstances:
		- Line supply with significant disturbance from other equipment (interference
		overvoltages)
		- Line supply with voltage imbalance between phases $>1.8 \%$ of nominal voltage - Drive supplied by a line with very low impedance (in the vicinity of a power
		transformer 10 times more powerful than the drive rating)
		- Installation of a large number of frequency inverters on the same line
		- Reduction of overloads on the $\cos \varphi$ correction capacitors, if the installation includes a power factor correction unit
		The use of line chokes is mandatory for ATV 312H••๐S6 drive

The prospective short-circuit current at the drive connection point must not exceed the maximum value indicated in the reference tables. The use of chokes allows connection to the following line supplies:
■ Max. Isc 22 kA for 200/240 V

- Max. Isc 65 kA for 380/500 V and 525/600V

Specifications										
Type of line choke			$\begin{array}{\|l} \text { VZ1 L004 } \\ \text { M010 } \end{array}$	$\begin{array}{\|l} \text { VZ1 L007 } \\ \text { UM50 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { VZ1 L018 } \\ \text { UM20 } \end{array}$	VW3 A4 551	VW3 A4 552	VW3 A4 553	VW3 A4 554	VW3 A4 555
Conformity to standards			IEC 61800-5-1 (VDE 0160 level 1 high-energy overvoltages on the line supply)							
Voltage drop			Between 3% and 5% of the nominal line voltage. Values higher than this will cause loss of torque.							
Degree of protection	Choke		IP 00							
	Terminals		IP 20						IP 10	
Inductance value		mH	10	5	2	10	4	2	1	0.5
Nominal current		A	4	7	18	4	10	16	30	60
Losses		W	17	20	30	45	65	75	90	80

Altivar ${ }^{\text {™ }} 312$
variable speed drives
Option: line chokes

VW3 A4 55•

Line chokes						
Altivar ${ }^{\text {Tm }} 312$					Choke	
	Line current without choke		Line current with choke		Reference	Weight
	U min. (1)	U max. (1)	U min. (1)	U max. (1)		
	A	A	A	A		kg
Single-phase supply voltage: 200 to 240 V 50/60 Hz						
ATV 312H018M2	3.0	2.5	2.1	1.8	VZ1 L004M010	0.630
ATV 312H037M2	5.3	4.4	3.9	3.3		
ATV 312H055M2	6.8	5.8	5.2	4.3	VZ1 L007UM50	0.880
ATV 312H075M2	8.9	7.5	7.0	5.9		
ATV 312HU11M2	12.1	10.2	10.2	8.6	VZ1 L018UM20	1.990
ATV 312HU15M2	15.8	13.3	13.4	11.4		
ATV 312HU22M2	21.9	18.4	19.2	16.1		

ATV 312H018M3	2.1	1.9	1	0.9	VW3 A4 551	1.500
ATV 312H037M3	3.8	3.3	1.9	1.6		
ATV 312H055M3	4.9	4.2	2.5	2.2		
ATV 312H075M3	6.4	5.6	3.3	2.9		
ATV 312HU11M3	8.5	7.4	4.8	4.2	VW3 A4 552	3.000
ATV 312HU15M3	11.1	9.6	6.4	5.6		
ATV 312HU22M3	14.9	13	9.2	8	VW3 A4 553	3.500
ATV 312HU30M3	19.1	16.6	12.3	10.7		
ATV 312HU40M3	24.2	21.1	16.1	14	VW3 A4 554	6.000
ATV 312HU55M3	36.8	32	21.7	19		
ATV 312HU75M3	46.8	40.9	29	25.2		
ATV 312HD11M3	63.5	55.6	41.6	36.5	VW3 A4 555	11.000
ATV 312HD15M3	82.1	71.9	55.7	48.6		

ATV 312H037N4	2.2	1.7	1.1	0.9	VW3 A4 551	1.500
ATV 312H055N4	2.8	2.2	1.4	1.2		
ATV 312H075N4	3.6	2.7	1.8	1.5		
ATV 312HU11N4	4.9	3.7	2.6	2		
ATV 312HU15N4	6.4	4.8	3.4	2.6		
ATV 312HU22N4	8.9	6.7	5	4.1	VW3 A4 552	3.000
ATV 312HU30N4	10.9	8.3	6.5	5.2		
ATV 312HU40N4	13.9	10.6	8.5	6.6		
ATV 312HU55N4	21.9	16.5	11.7	9.3	VW3 A4 553	3.500
ATV 312HU75N4	27.7	21	15.4	12.1		
ATV 312HD11N4	37.2	28.4	22.5	18.1	VW3 A4 554	6.000
ATV 312HD15N4	48.2	36.8	29.6	23.3		

Three-phase supply voltage: 525 to 600 V 50/60 Hz						
ATV 312H075S6 (2)	-	-	1.4	1.4	VW3 A4 551	1.500
ATV 312HU15S6 (2)	-	-	2.4	2.3		
ATV 312HU22S6 (2)	-	-	3.8	3.6		
ATV 312HU40S6 (2)	-	-	6	5.8	VW3 A4 552	3.000
ATV 312HU55S6 (2)	-	-	7.8	7.5		
ATV 312HU75S6 (2)	-	-	11	10.7	VW3 A4 553	3.500
ATV 312HD11S6 (2)	-	-	15	14.4		
ATV 312HD15S6 (2)	-	-	21.1	20.6	VW3 A4 554	6.000
(1) Nominal supply voltage:						
For drives			Nominal voltage			
			U min.		U max.	
ATV 312H•・ゃM2 ATV 312H $\bullet \bullet$ •M3			200		240	
ATV 312Hee*N4			380		500	
ATV 312HeeゃS6			525		600	

(2) Line choke mandatory for ATV 312H $\bullet \bullet S 6$ drives.

Altivar ${ }^{\text {m" }} 312$
 variable speed drives

Integrated EMC filters and optional additional EMC filters

Introduction

Integrated filters

Altivar ${ }^{\text {T" }} 312$ drives, apart from ATV 312H $\bullet \bullet \bullet M 3$ and ATV312H $\bullet \bullet \bullet S 6$, have integrated radio interference input filters to comply with the EMC standard for variable speed electrical power drive "products" IEC 61800-3, categories C2 or C3, and to comply with the European EMC (electromagnetic compatibility) directive.

Additional EMC input filters

Additional EMC input filters (1) enable drives to meet more stringent requirements: they are designed to reduce conducted emissions on the line supply below the limits of standard IEC 61800-3 category C1 or C2 (see page 47).

These additional EMC filters can be mounted beside or under the drive.
They act as a support for the drives and are attached to them via tapped holes.

Use according to the type of line supply

Additional EMC filters can only be used on TN (neutral connection) and TT (neutral to ground) type systems.

Standard IEC 61800-3, appendix D2.1, states that on IT systems (isolated or impedance grounded neutral), filters can cause permanent insulation monitors to operate in a random manner.
The effectiveness of additional filters on this type of system depends on the type of impedance between neutral and ground, and therefore cannot be predicted. If a machine has to be installed on an IT system, one solution is to insert an isolation transformer and connect the machine locally on a TN or TT system.

Specifications			
Conformity to standards			EN 133200
Degree of protection			IP 21 and IP 41 on upper part
Maximum relative humidity			95\% non-condensing, no dripping water conforming to IEC 60068-2-3
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	-10 to +60
	Storage	${ }^{\circ} \mathrm{C}$	-25 to + 70
Maximum operating altitude	Without derating	m	1000 (above this, derate the current by 1% for every additional 100 m)
Vibration resistance	Conforming to IEC 60068-2-6		1.5 mm peak to peak from 3 to 13 Hz 1 gn peak from 13 to 150 Hz
Shock resistance	Conforming to IEC 60068-2-27		15 gn for 11 ms
Maximum nominal voltage	50/60 Hz single-phase	V	$240+10 \%$
	50/60 Hz three-phase	V	$\begin{aligned} & 240+10 \% \\ & 500+10 \% \\ & \hline \end{aligned}$

(1) Not available for ATV $312 \mathrm{H} \bullet \bullet$ •S6 drives

Altivar" 312
variable speed drives
Option: additional EMC input filters

Additional EMC input filters							
For drives	Filter						
Reference	Maximum length of shielded cable (1)		$\begin{aligned} & \text { In } \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { (3) } \end{aligned}$	Losses Reference (4)		Weight
	IEC 61800-3 (5)						
	Category C2	Category C1					
	m	m	A	mA	W		kg
Single-phase supply voltage: $\mathbf{2 0 0}$ to 240 V $\mathbf{5 0 / 6 0 ~ H z}$							
ATV 312H018M2 ATV 312H037M2 ATV 312H055M2 ATV 312H075M2	50	20	9	100	3.7	VW3 A31401	0.600
ATV 312HU11M2 ATV 312HU15M2	50	20	16	150	6.9	VW3 A31403	0.775
ATV 312HU22M2	50	20	22	80	7.5	VW3 A31405	1.130
Three-phase supply voltage: $\mathbf{2 0 0}$ to $\mathbf{2 4 0 ~ V ~ 5 0 / 6 0 ~ H z ~}$							
ATV 312H018M3 ATV 312H037M3 ATV 312H055M3 ATV 312H075M3	5	-	7	7	2.6	VW3 A31402	0.650
ATV 312HU11M3 ATV 312HU15M3 ATV 312HU22M3	5	-	15	15	9.9	VW3 A31404	1.000
ATV 312HU30M3 ATV 312HU40M3	5	-	25	35	15.8	VW3 A31406	1.650
ATV 312HU55M3 ATV 312HU75M3	5	-	47	45	19.3	VW3 A31407	3.150
ATV 312HD11M3 ATV 312HD15M3	5	-	83	15	35.2	VW3 A31408	5.300
Three-phase supply voltage: $\mathbf{3 8 0}$ to $\mathbf{5 0 0 ~ V ~ 5 0 / 6 0 ~ H z ~}$							
ATV 312H037N4 ATV 312H055N4 ATV 312H075N4 ATV 312HU11N4 ATV 312HU15N4	50	20	15	15	9.9	VW3 A31404	1.000
ATV 312HU22N4 ATV 312HU30N4 ATV 312HU40N4	50	20	25	35	15.8	VW3 A31406	1.650
ATV 312HU55N4 ATV 312HU75N4	50	20	47	45	19.3	VW3 A31407	3.150
ATV 312HD11N4 ATV 312HD15N4	50	20	49	45	27.4	VW3 A31409	4.750

(1) The filter selection tables give the maximum lengths for shielded cables connecting motors to drives for a switching frequency of 2 to 16 kHz . These maximum lengths are given as examples only, as they vary depending on the stray capacitance of the motors and the cables used. If motors are connected in parallel, the sum of the cable lengths must be taken into account.
(2) In: nominal filter current.
(3) II: maximum ground leakage current at 50 Hz .
(4) Via heat dissipation, at the nominal filter current (In).
(5) Standard IEC 61800-3: EMC immunity and conducted and radiated EMC emissions:

- Category C1: public power supply (residential)
- Category C2: industrial power supply

Altivar ${ }^{\text {m" }} 312$

variable speed drives

Options: output filters, motor chokes and ferrite suppressors

Introduction

Output filters and motor chokes can be inserted between the Altivar ${ }^{\text {™ }} 312$ drive and the motor to:
■ Limit the $\mathrm{dv} / \mathrm{dt}$ at the motor terminals (500 to $1500 \mathrm{~V} / \mu \mathrm{s}$), for cables longer than 50 m
■ Filter interference caused by opening a contactor placed between the filter and
the motor

- Reduce the motor ground leakage current

The output filter range features LR filter cells.
Ferrite suppressors are necessary on ATV 312H $\bullet \bullet$ M2 and ATV 312H018M3 to HU22M3 drives when an output contactor is used.

LR filter cell

This cell features 3 high-frequency chokes and 3 resistors.
The LR filter cell is particularly suitable for:

- Reducing the $\mathrm{dv} / \mathrm{dt}$ at the motor terminals

■ Using long motor cables (see specifications table page 49)

Motor choke

The motor choke is particularly suitable for:
■ Reducing overvoltages at the motor terminals (see length of motor cable in specifications table page 49)
■ Minimizing the current wave, thus reducing motor noise

Ferrite suppressors for downstream contactor opening

Ferrite suppressors for downstream contactor opening are inserted on the motor cable between ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 2$ or ATV 312H018M3 to HU22M3 drives and the output contactor.

Specifications, references

Altivar ${ }^{\text {T" }} 312$
variable speed drives
Options: output filters, motor chokes and ferrite suppressors

[^5]
EMC mounting plate (supplied with the drive)

ATV 312	c	c1
H018M2, H037M2	132	61.5
H055M2, H075M2	142	61.5
H018M3, H037M3	122	51.5
H055M3, H075M3	132	51.5

ATV 312HU11M2 to HU22M2, ATV 312HU11M3 to HU40M3, ATV 312H037N4 to HU40N4, ATV 312H075S6 to HU40S6
EMC mounting plate (supplied with the drive)

ATV 312	a	b	c	c1	d	G	H	J	K	\varnothing
HU11M3, HU15M3	105	143	132	67.3	49	93	121.5	5	16.5	$2 \times \varnothing 5$
HU11M2, HU15M2 HU22M3 H037N4 to HU15N4	107	143	152	67.3	49	93	121.5	5	16.5	$2 \times \varnothing 5$
H075S6, HU15S6										
HU22M2 HU30M3, HU40M3 HU22N4 to HU4N4 HU22S6, HU40S6	142	184	152	88.8	48	126	157	6.5	20.5	$4 \times \varnothing 5$

Introduction:	Specifications:	References:	Wiring diagrams:
page 20	page 22	page 28	page 56

Drives (continued)

ATV 312HU55M3, HU75M3, ATV 312HU55N4, HU75N4, ATV 312HU55S6, HU75S6
EMC mounting plate (supplied with the drive)

ATV 312HD11M3, HD15M3, ATV 312HD11N4, HD15N4, ATV 312HD11S6, HD15S6
EMC mounting plate (supplied with the drive)

Accessories and remote display terminal
Accessories
Plates for mounting on DIN rail
VW3 A9 804

UL Type 1 conformity kits

VW3 A31 811 to 817

VW3	Δ b
A31 811 to A31 815	68
A31 816	96
A31 817	99

(1) Drive
(2) VW3 A31 81• kit

Options

IP 54 remote display terminal

IP 65 remote display terminal

VW3 A1 007

Cut-outs and drill holes
holes

Braking resistors

Options (continued)
Non-protected braking resistors
VW3 A7 723, 724
2-wire output, length 0.5 m

Protected braking resistors

VW3 A7 701 to 703

VW3	a	b	c	G	H	Ø
A7 701	95	295	95	70	275	6×12
A7 702	95	395	95	70	375	6×12
A7 703	140	395	120	120	375	6×12

VW3 A7 704, 705
Installation recommendations

Introduction:	Specifications: page 42	References: page 43	Wiring diagrams: page 56	Functions: page 62
		Schneider		

Chokes and additional EMC input filters

Options (continued)
Line chokes
VZ1 L004M010, L007UM50, L018UM20

VZ1	a	b	c	G	H	\varnothing
L004M010	60	100	80	50	44	4×9
L007UM50	60	100	95	50	60	4×9
L018UM20	85	120	105	70	70	5×11

Line chokes and motor chokes
VW3 A4 551 to 555

VW3	\mathbf{a}	\mathbf{b}	\mathbf{c}	c1	G	G1	H	\varnothing
A4 551	100	135	55	60	40	60	42	6×9
A4 552, 553	130	155	85	90	60	80.5	62	6×12
A4 554	155	170	115	135	75	107	90	6×12
A4 555	180	210	125	165	85	122	105	6×12

Additional EMC input filters

Mounting the filter under the drive

Mounting the filter next to the drive
View from the front

VW3	a	b	C	G	H	\varnothing
A31401, 402	72	195	37	52	180	4.5
A31403	107	195	35	85	180	4.5
A31404	107	195	42	85	180	4.5
A31405	140	235	35	120	215	4.5
A31406	140	235	50	120	215	4.5
$\mathbf{A 3 1 4 0 7}$	180	305	60	140	285	5.5
$\mathbf{A 3 1 4 0 8}$	245	395	80	205	375	5.5
$\mathbf{A 3 1 4 0 9}$	245	395	60	205	375	5.5

Introduction:	Specifications:
pages 44,46 and 48	pages 44,46 and

Options (continued)
LR filter cells
VW3 A58451 to 453

VW3	a	b	c	G	H
A58451	169.5	340	123	150	315
A58452					
A58453	239	467.5	139.5	212	444

Ferrite suppressors for downstream contactor opening VW3 A31451 to 453

VW3	a	b	c	\varnothing
A31451	33.5	33	33	13
A31452	33	21.5	22.5	9
A31453	30	19	19	6

ATV 312HゃゃゃM2
Single－phase power supply

ATV 312Hゃゃ॰M3，ATV 312Hゃゃ॰N4，ATV 312Hゃゃ॰S6

Three－phase power supply

（1）Line choke（single－phase or three－phase）．
（2）Fault relay contacts．Used for remote signalling of the drive status．
（3）Connection of the common for the logic inputs depends on the position of the switch（see wiring diagrams below）．
Note：All terminals are located at the bottom of the drive．
Install interference suppressors on all inductive circuits near the drive or connected on the same circuit，such as relays，contactors，solenoid valves，fluorescent lighting，etc．
Compatible components（for a complete list of references，please refer to the＂Motor starter solutions－Control and protection components＂catalog）．

Item no．	Designation
KM1	Line contactor LC1 $\bullet \bullet \bullet+$ suppressor module LA4 DA2U（see page 60）

Q1	GV2 L magnetic circuit－breaker or Compact NS circuit－breaker（see page 60）
Q3	GV2 L magnetic circuit－breaker rated at twice the nominal primary current of T1
S1，S2	GB2 CB05 thermal magnetic circuit breaker
T1	XB4 B or XB5 A push buttons

Examples of recommended wiring diagrams

Logic input switches

Source position

Sink position

Introduction： page 20

L11：Stop LI2：Forward LIx：Reverse

AOC output
Wired as logic output

Current analog input 0－20 mA，4－20 mA，X－Y mA

CLI position with PLC transistor outputs

Voltage analog inputs
External＋ 10 V

Functions：
page 62

Additional EMC input filters VW3 A31 40•

Single-phase power supply

Connections ensuring conformity to EMC standards

Principle

- Grounds between the drive, motor and cable shielding must have "high-frequency" equipotentiality.
- Use shielded cables with the shielding connected to ground throughout 360° at both ends for the motor cable, the braking resistor cable and the control-signal cables. Metal conduit or ducting can be used for part of the shielding length provided that there is no break in the continuity of the ground connection.
■ Ensure maximum separation between the power supply cable and the motor cable.

Installation diagram

1 Steel plate to be mounted on the drive (grounded casing)
2 Altivar ${ }^{\text {TM }} 312$ drive
3 Unshielded power supply wires or cable
4 Unshielded wires or cable for the output of the fault relay contacts
5 Attach and ground the shielding of cables 6,7 and 8 as close as possible to the drive:

- Strip the cable to expose the shielding
- Attach the cable to the plate 1, attaching the clamp on the stripped part of the shielding.
The shielding must be clamped tightly enough to the metal sheet to ensure good contact.
For cables 6, 7 and 8, the shielding must be connected to ground at both ends. The shielding must be continuous, and if intermediate terminals are used, they must be placed in EMC shielded metal boxes.
6 Shielded cable for connecting the motor
7 Shielded cable for connecting the control-signal wiring. For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}$).
8 Shielded cable for connecting the braking resistor
9 PE cable (green-yellow)

Note: The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE conductors (green-yellow) to the appropriate terminals on each device. If using an additional EMC input filter, it must be mounted under the drive and connected directly to the line supply via an unshielded cable. Link 3 on the drive is then via the filter output cable.

Operation on an IT system (isolated or impedance grounded neutral)

Use a permanent insulation monitor compatible with non-linear loads, such as the Schneider Electric XM200 (please consult our website www.schneider-electric.com or contact your Customer Care Center).
ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 2$ and ATV $312 \mathrm{H} \bullet \bullet \bullet N 4$ drives have integrated EMC filters. For use on an IT system, these filters can be disconnected by removing their ground connection:

- For ATV 312H018M2 to HU22M2 and H037N4 to HU40N4 drives, remove a jumper to disconnect the filter.
- For ATV 312HU55N4 to HD15N4 drives, move the wire with the cable tag to disconnect the filter.

Introduction:	Specifications:	References:	Dimensions:
pages 20 and 46	pages 22 and 46	pages 28 and 47	pages 50 and 54

Installation

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.

Install the unit vertically, at $\pm 10^{\circ}$:
■ Do not place it close to heating elements

- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit

Mounting types
■ Type A mounting

- Type B mounting

- Type C mounting

Removing the protective cover from the top of the drive (as shown opposite) changes the degree of protection to IP 20.

Derating curves for the nominal drive current (In) as a function of temperature, switching frequency and mounting type.

For intermediate temperatures (for example, $55^{\circ} \mathrm{C}$), interpolate between 2 curves.

Introduction:	Specifications:	References:	Functions:
page 20	page 22	page 28	pimensions:

Mounting in an enclosure

Follow the mounting recommendations on the opposite page.
To ensure proper air circulation in the drive:
■ Install ventilation grills

- Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (see below).
■ Use special filters with IP 54 protection
- Remove the protective cover from the top of the drive

Fan flow rate depending on the drive rating

ATV 312	Flow rate $\mathbf{m}^{3} / \mathrm{min}$
H018M2 to H055M2	0.3
H018M3 to H055M3	
H037N4 to HU11N4	
H075S6, HU15S6	
H075M2 to HU15M2	0.55
H075M3 to HU15M3	
HU15N4, HU22N4	
HU22S6, HU40S6	
HU22M2	
HU22M3 to HU40M3 HU30N4, HU40N4 HU55S6, HU75S6	
HU55M3	
HU55N4, HU75N4 HD11S6	1.55
HU75M3, HD11M3	
HD11N4, HD15N4	2.8
HD15S6	
HD15M3	3.6

Metal dust and damp proof wall-mounted or floor-standing enclosure (IP 54 degree of protection)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature can reach $50^{\circ} \mathrm{C}$.

Calculating the dimensions of the enclosure

Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R th $=\frac{\theta^{\circ}-\theta e}{} \quad \theta=$ maximum temperature inside the enclosure in ${ }^{\circ} \mathrm{C}$
$\forall \mathrm{e}=$ maximum external temperature in ${ }^{\circ} \mathrm{C}$
$P=$ total power dissipated in the enclosure in W
Power dissipated by drive: see page 28.
Add the power dissipated by the other components of the device.
Useful heat exchange area of enclosure $S\left(\mathrm{~m}^{2}\right)$
(sides + top + front panel if wall-mounted)
$S=\frac{K}{R t h} \quad K=$ thermal resistance per m^{2} of the enclosure
For metal enclosures:
■ $\mathrm{K}=0.12$ with internal fan
■ $K=0.15$ without fan

Note: Do not use insulated enclosures, as they have a poor level of conductivity.
Introduction: \quad Specifications: \quad References: \quad Dimensions: \quad Functions

Altivar" 312

variable speed drives

Motor starters

GV2 L14
$+$
LC1 D09
$+$
ATV 312H075M2

Applications

The combinations listed below can be used to assemble a complete motor starter comprising a circuit-breaker, a contactor and an Altivar ${ }^{\text {TM }} 312$ variable speed drive. The circuit-breaker provides protection against accidental short-circuits, disconnection and, if necessary, isolation.
The contactor controls and manages any safety features and isolates the motor on stopping.
The Altivar 312 drive is protected electronically against short-circuits between phases and between phase and ground. It therefore ensures continuity of service and thermal protection of the motor.

For other voltages between 24 V and 660 V , or a DC control circuit, please refer to the "Motor starter solutions - Control and protection components" catalog.

Altivar" 312
variable speed drives

Motor starters

Motor starters (continued)					
Standard power rating of $50 / 60 \mathrm{~Hz}$ 4-pole motors (1)	Drive	Circuit-breaker		Contactor (2) Add voltage reference to basic reference to obtain full reference (3)	
	Reference	Reference	Rating		
kW HP			A		
Three-phase supply voltage: 525 to 600 V					
0.751	ATV 312H075S6	GV2 L08	4	LC1	
1.5	ATV 312HU15S6	GV2 L10	6.3	LC1	
2.23	ATV 312HU22S6	GV2 L14	10	LC1	
45	ATV 312HU40S6	GV2 L16	14	LC1	
5.517 .5	ATV 312HU55S6	GV2 L20	18	LC1	
7.510	ATV 312HU75S6	GV2 L22	25	LC1	
11	ATV 312HD11S6	GV2 L32	32	LC1	
15 20	ATV 312HD15S6	GV3 L40	40	LC1	
(1) The values expressed in HP conform to the NEC (National Electrical Code). (2) Composition of contactors LC1-D09/D18/D25: 3 poles +1 N/O auxiliary contact +1 N/C auxiliary contact. (3) Replace $\bullet \bullet$ with the control circuit voltage reference indicated in the table below:					
AC control circuit					
Volts ~	2448	110	220	230	230/240
LC1-D $\quad 50 / 60 \mathrm{~Hz}$	B7 E7	F7	M7	P7	U7

[^6]Summary of functions Page
Drive factory configuration 63
Human-Machine Interface (HMI) Description63
Application functions
Operating speed rang 64
Acceleration and deceleration ramp times 64
Acceleration and deceleration ramp profiles 64
Ramp switching 65
Automatic adaptation of deceleration ramp 65
Voltage/frequency ratio 66
Auto-tuning 66
Switching frequency, noise reduction 66
Skip frequencies 67
Speed reference 67
Analog inputs 67
Preset speeds 67
+/- speed 68
Save reference 68
Jog operation 69
Command and reference channels 69
Reference switching 69
Summing inputs 69
PI regulator 70
Current limit switching 70
Limiting low speed operating time 70
Motor switching 70
Control mode switching 71
2-wire control 71
3-wire control 71
Forced local mode 71
Freewheel stop 71
Fast stop 71
DC injection stop 71
Brake control 72
Limit switch management 72
Monitoring 72
Fault management 73
Fault reset 73
General reset (disables all faults) 73
Controlled stop on loss of line supply 73
Stop mode in the event of a fault 73
Automatic catching of a spinning load with speed detection ("catch on the fly") 74
Automatic restart 74
Derated operation in the event of an undervoltage 74
Fault relay, unlocking 74
Resetting operating time to zero 74
Motor thermal protection 75
Drive thermal protection 75
R1, R2 relay configuration 75
AOC/AOV analog outputs 76
Saving and retrieving the configuration 76
Function compatibility table
Introduction 77

Introduction:	Specifications:	References:
page 20	page 22	page 28

Altivar ${ }^{\text {r" }} 312$
 variable speed drives

ATV 312H075M2 with front panel door closed, with cover 5: STOP/RESET and RUN keys not accessible

ATV 312H075M2 with front panel door closed, without cover 5: STOP/RESET and RUN keys accessible

ATV 312H075M2 with front panel door open

[^7]
Drive factory configuration

The Altivar ${ }^{\text {™ }} 312$ drive is configured to allow a quick start-up for most applications. Factory configuration:
■ Nominal motor frequency: 50 Hz
■ Motor voltage: 230 V (ATV 312H $\bullet \bullet$ M2, ATV $312 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 3$),
400 V (ATV 312H••๑N4) or 600 V (ATV 312H $\bullet \bullet \bullet$ S6)
■ Linear ramp times: 3 seconds
■ Low speed (LSP): $0 \mathrm{~Hz} /$ High speed (HSP): 50 Hz

- Normal stop mode on deceleration ramp
- Stop mode in the event of a fault: freewheel
- Motor thermal current = nominal drive current

■ Standstill injection braking current $=0.7 \times$ nominal drive current, for 0.5 seconds

- Constant torque operation with sensorless flux vector control
- Logic inputs:
- 2 directions of operation (LI1, LI2), 2-wire control
$\square 4$ preset speeds (LI3, LI4): LSP (low speed), $10 \mathrm{~Hz}, 15 \mathrm{~Hz}, 20 \mathrm{~Hz}$
- Analog inputs:
\square Al1 speed reference $(0+10 \mathrm{~V})$
\square Al2 $(0 \pm 10 \mathrm{~V})$ summing of Al 1
- AI3 (4-20 mA) not configured
- Relay R1: fault relay
- Relay R2: not assigned
- Analog output AOC: 0-20 mA, image of the motor frequency
- Automatic adaptation of the deceleration ramp in the event of overbraking
- Switching frequency 4 kHz , random frequency

Human-Machine Interface (HMI)

Description

1 Display:

- 4-digit display
- Display of numeric values and codes

■ Indication of the unit of the displayed value
2 Display of the drive status:
■ REF: Reference mode. This mode is used to display the motor frequency reference of the active reference channel (terminals, local mode, remote display terminal or Modbus ${ }^{\text {T" }}$ serial link). In local mode, the reference can be modified using the navigation button 4 , if the function is configured.

- MON: Monitoring mode. This mode is used to display the monitoring parameters when the drive is running.
- CONF: Configuration mode. This mode is used to configure the drive parameters. These parameters can be modified using the SoMove ${ }^{\text {TTM }}$ setup software.

3 Use of the keys:

- MODE is used to access one of the following modes:
- Reference mode REF
\square Monitoring mode MON
\square Configuration mode CONF
Note: This key cannot be accessed if the front panel door is closed.
■ ESC: Aborts a value, a parameter or a menu to return to the previous selections
- STOP/RESET: Local motor stop command, clears drive faults (key active in
factory configuration)
■ RUN: Local motor run command, if its activation is programmed
4 Use of the navigation button:
■ Rotate: Increases or decreases the value, or goes to the next value
■ Press: Saves the current value or selects the value
- The button can be used as a potentiometer in local mode

5 Cover that can be removed for access to the RUN and STOP/RESET keys.
6 It is possible to lock the front panel door with a lead seal.

Application functions

■ Operating speed range

This function is used to determine the 2 frequency limits which define the speed range permitted by the machine under actual operating conditions for all applications with or without overspeed.

- Acceleration and deceleration ramp times

This function is used to define acceleration and deceleration ramp times according to the application and the machine dynamics.

Linear acceleration ramp
t1: acceleration time
t2: deceleration time
t 1 and t 2 can be set independently between 0.1 and 999.9 s , factory setting: 3 s

- Acceleration and deceleration ramp profiles

These enable a gradual change in the output frequency starting from a speed reference, following a linear profile or a preset profile.

\square S ramps

For applications such as material handling, packaging and passenger transport, the use of S ramps takes up mechanical backlash, eliminates jolts, and limits "nonfollowing" of speed during rapid transient operation of high-inertia machines.

- U ramps

U ramps are specifically for pumping applications, for example an installation with centrifugal pump and non-return valve. They provide better control of closing of the non-return valve.
Selecting linear, S, U or customized profiles assigns both the acceleration and deceleration ramps.

HSP: high speed
t1: ramp time set
$\mathrm{t} 2=0.6 \mathrm{xt} 1$
The rounding coefficient is mounted

HSP: high speed
t1: ramp time set
$\mathrm{t} 2=0.5 \mathrm{xt} 1$
The rounding coefficient is mounted.

HSP: high speed
tA1: adjustable between 0 and 100\% (of ACC or AC2) tA2: can be set between 0 and (100% - tA1) (of ACC or AC2)
tA3: can be set between 0 and 100\% (of dEC or dE2) tA4: can be set between 0 and (100% - tA3) (of dEC or dE2)
dE2)
ACC: acceleration ramp 1 time
AC2: acceleration ramp 2 time
dEC: deceleration ramp 1 time
dE2: deceleration ramp 2 time

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Altivar" 312
variable speed drives

- Ramp switching

This function is used to switch two acceleration and deceleration ramp times, which can be adjusted separately.
Ramp switching can be enabled by:
\square Alogic input
\square A frequency threshold

- A combination of logic input and frequency threshold

This function is suitable for:

- Material handling with smooth starting and approach
\square Machines with fast steady state speed correction

Acceleration 1 (ACC) and deceleration 1 (dEC):

- Adjustment 0.1 to 999.9 s
- Factory setting 3 s

Acceleration 2 (AC2) and deceleration 2 (dE2):

- Adjustment 0.1 to 999.9 s
- Factory setting 5 s

HSP: high speed

Example of switching using logic input L/4

- Automatic adaptation of deceleration ramp

This function is used to automatically adapt the deceleration ramp if the initial setting is too low for the inertia of the load. It avoids the drive locking in the event of an overbraking fault.
The function is suitable for all applications which do require precise stopping and do not use braking resistors.
Automatic adaptation must be cancelled if the machine has position control with stopping on a ramp and a braking resistor installed. It is automatically disabled if the brake sequence is configured.

Altivar ${ }^{\text {rw }} 312$

variable speed drives

■ Voltage/frequency ratio

\square Motor and power supply specifications
This function is used to determine the limit values for the voltage/frequency ratio according to the specifications of the line supply, motor and application.
The following values should be set for constant or variable torque applications with or without overspeed:

- The base frequency corresponding to the line supply
- The nominal motor frequency (in Hz) given on the motor rating plate
- The nominal motor voltage (in V) given on the motor rating plate
- The maximum output frequency of the drive (in Hz)

■ Type of voltage/frequency ratio

This is used to adapt the voltage/frequency ratio to the application in order to optimize performance for the following applications:

- Constant torque applications (machines with average loads operating at low speed) with motors connected in parallel or special motors (e.g. resistive cage motor): ratio L
- Variable torque applications (pumps, fans): ratio P
- Machines with heavy loads operating at low speed, machines with fast cycles, with (sensorless) flux vector control: ratio n
- Energy saving, for machines with slow torque and speed variations: ratio nLd. The voltage is automatically reduced to minimum according to the necessary torque.

Un: nominal motor voltage
frn: nominal motor frequency

■ Auto-tuning
Auto-tuning can be performed:

- Voluntarily by the operator using dialog tools via local control or the serial link
\square Each time the drive is switched on
\square On each run command
\square By enabling a logic input
Auto-tuning is used to optimize application performance.

■ Switching frequency, noise reduction

Adjusting the switching frequency setting reduces the noise generated by the motor. The switching frequency is modulated randomly in order to avoid resonance. This function can be disabled if it causes instability.
High frequency switching of the intermediate DC voltage can be used to supply the motor with a current wave that has little harmonic distortion. The switching frequency can be adjusted during operation to reduce the noise generated by the motor. Value: 2 to 16 kHz. Factory setting 4 kHz
For all applications which require low motor noise.

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Altivar" 312 variable speed drives

- Skip frequencies

This function suppresses one or two critical speeds that may cause mechanical resonance.
It is possible to prohibit prolonged operation of the motor on 1 or 2 frequency bands ($\pm 1 \mathrm{~Hz}$), around an adjustable frequency on the speed range.
This function is suitable for lightweight machines, bulk product conveyors with an unbalanced motor, fans and centrifugal pumps.

Motor speed change depending on the skip frequency reference

- Speed reference

The speed reference can come from different sources, depending on the drive configuration:

- References provided by 3 analog inputs
\square The navigation button reference
\square The +/-speed function via logic input, using the keypad or remote display terminal keys
\square The remote display terminal reference
\square Speed references provided by the communication bus or networks
These sources are managed by programming the reference functions and channels.
- Analog inputs

There are 3 analog inputs:

- 2 voltage inputs:
- 0-10 V (Al1)
- $\pm 10 \mathrm{~V}$ (Al2)
- 1 current input:
- $\mathrm{X}-\mathrm{Y} \mathrm{mA}(\mathrm{Al} 3)$, where X is configurable between 0 and 20 mA , and Y is configurable between 4 and 20 mA

- Preset speeds

This function is used to switch preset speed references.
Choose between 2, 4, 8 or 16 preset speeds.
Enabled by means of $1,2,3$ or 4 logic inputs.
The preset speeds are adjustable in increments of 0.1 Hz from 0 Hz to 500 Hz .
This function is suitable for material handling and machines with several operating speeds.

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Altivar" 312

variable speed drives

■ +/- speed

This function is used to increase or decrease a speed reference by means of 1 or 2 logic inputs, with or without the last reference being saved (motorized potentiometer function).
This function is suitable for centralized control of a machine with several sections operating in one direction or for control by a pendant control station of a material handling crane with two operating directions.

Two types of operation are available:
\square Use of single-action buttons: two logic inputs are required in addition to the operating direction(s).
The input assigned to the + speed command increases the speed, the input assigned to the - speed command decreases the speed.

Example of $+/-$ speed with 2 logic inputs, single-action buttons and reference saving
\square Use of double-action buttons (only one logic input assigned to + speed is necessary).
Logic inputs:
Forward

LSP: low speed; HSP: high speed
Example with double-action buttons and 1 logic input
Note: This type of $+/-$ speed control is incompatible with 3-wire control

- Save reference

This function is associated with +/- speed control.
It enables the last speed reference prior to the loss of the run command or line supply to be read and saved. The saved reference is applied to the next run command.

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Example of reference switching

- Jog operation

This function is used for pulse operation with minimum ramp times (0.1 s), a limited speed reference and minimum time between 2 pulses.
It is enabled by 1 logic input and pulses given by the operating direction command.
This function is suitable for machines with product insertion in manual mode (e.g. gradual movement of the mechanism during maintenance operations).

- Command and reference channels

There are several command and reference channels, which can be independent.
Commands (forward, reverse, etc.) and speed references can be given via the following channels:

- Terminals (logic inputs and analog I/O)
- Local mode (STOP/RESET and RUN keys and navigation button)
\square Remote display terminal
\square Serial link:
- Remote display terminal
- Modbus control word
- CANopen control word

The command channels and speed reference channels can be separate. E.g. speed reference issued by CANopen and command issued by the remote display terminal.

Note: The STOP/RESET keys on the Human-Machine interface keypad and the remote display terminal can retain their priority.
The Summing inputs and PI regulator functions only apply to one reference channel.

- Reference switching

Switching between 2 speed references can be enabled via:

- A logic input
\square A bit in a Modbus or CANopen control word
Reference 1 is active if the logic input (or control word bit) is at 0 . Reference 2 is active if the logic input (or control word bit) is at 1.
The reference can be switched with the motor running.

Connection diagram for reference switching

- Summing inputs

This function is used to add together 2 to 3 speed references from different sources. The references to be added together are selected from all the possible types of speed reference.
E.g.

- Reference 1 from Al1
- Reference 2 from Al2
- Reference 3 from AIP

Drive speed reference $=$ reference $1+$ reference $2+$ reference 3 .
Introduction: \quad Specifications: \quad References: \quad Dimensions: \quad diagrams:

ACC: Acceleration
DEC: Deceleration
FBS: PI feedback multiplication coefficient
HSP: High speed
PIC: Reversal of the direction of correction of the PI regulator
LSP: Low speed
RIG: PI regulator integral gain
RPG: PI regulator proportional gain
Pl feedback

PI regulator

This function is used for simple control of a flow rate or a pressure with a sensor supplying a feedback signal adapted to the drive. It is suitable for pumping and ventilation applications.

\square PI reference

- Internal regulator reference, adjustable from 0 to 100
- Regulation reference selected from all the possible types of regulation reference
- Preset PI references
- $\mathbf{2}$ or $\mathbf{4}$ preset PI references adjustable from 0 to 100 , require the use of 1 or 2 logic inputs respectively
\square Manual reference
- Speed reference selected from all the possible types of speed reference
- Pl feedback:
- Analog input Al1, Al2 or AI3
\square Auto/Man:
- Logic input LI for switching operation to speed reference (Man) or PI regulation (Auto)
During operation in automatic mode, the process feedback can be adapted to correct inverse PI , adjust the proportional and integral gain, or apply a ramp (time = ACC DEC) for establishing the Pl action on starting and stopping.
The motor speed is limited to between LSP and HSP.
Note: The PI function is incompatible with the Preset speeds and JOG functions. The PI reference can also be transmitted on line via the Modbus ${ }^{\text {T" }}$ RS 485 serial link or via the CANopen ${ }^{\text {t" }}$ bus.

■ Current limit switching

A second current limit can be configured between 0.25 and 1.5 times the nominal drive current.
This function limits the torque and the temperature rise of the motor.
Switching between the two current limits can be enabled via:
\square A logic input
\square A bit in a Modbus or CANopen control word

- Limiting low speed operating time

The motor is stopped automatically after a period of operation at low speed (LSP) with a zero reference and a run command present.
This time can be set between 0.1 and 999.9 seconds (0 corresponds to an unlimited time). Factory setting: 0 s . The motor restarts automatically on the ramp when the reference reappears or if the run command is interrupted and then re-established. This function is suitable for automatic stopping/starting of pressure-regulated pumps.

- Motor switching

This function allows two motors with different powers to be supplied alternately by the same drive. Switching must take place with the drive stopped and locked, using an appropriate sequence at the drive output.
The function can be used to adapt the motor parameters. The following parameters are switched automatically:
\square Nominal motor voltage

- Nominal motor frequency
\square Nominal motor current
\square Nominal motor speed
- Motor cosine Phi (power factor)
- Selection of the type of voltage/frequency ratio for motor 2
- IR compensation, motor 2
- Motor frequency loop gain
\square Motor stability
\square Motor slip compensation
Motor thermal protection is disabled by this function.
Motor switching can be enabled by:
\square A logic input
\square A bit in a Modbus or CANopen control word
With hoisting applications, this function enables a single drive to be used for vertical and horizontal movements.

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Accessible settings:
t1: brake release time delay
t 2 : brake engage time delay
Brake control

- Brake control

This function is used to manage control of an electromagnetic brake in synchronization with starting and stopping the motor to avoid jolts and speed errors. The brake control sequence is managed by the drive.
Adjustable values for releasing the brake: current threshold and time delay Adjustable values for engaging the brake: frequency threshold and time delay Enabled by: relay logic output R2 or logic output AOC assigned to brake control. This function is suitable for material handling applications with movements equipped with electromagnetic brakes (hoisting) and machines requiring holding brake control (unbalanced machines).

■ Principle:

- Vertical hoisting movement:

Maintains motor torque in an upward direction when the brake is being released and engaged, in order to hold the load and start smoothly as soon as the brake is released. - Horizontal hoisting movement:

Synchronizes brake release with the build-up of torque during starting and brake engage at zero speed on stopping, to prevent jolting.
The recommended brake control settings for vertical hoisting applications are as follows (for horizontal hoisting applications, set the current threshold to zero):

- Brake release current: Set the brake release current to the nominal current indicated on the motor. If, during testing, the torque is insufficient, increase the brake release current (the maximum value is imposed by the drive).
- Acceleration time: For hoisting applications it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not change to current limiting.
The same recommendation applies for deceleration
Note: For a hoisting movement, a braking resistor should be used. Ensure that the selected settings and configurations will not result in dropping or loss of control of the load being lifted.
- Brake release time delay t1: Adjust according to the type of brake. It is the time required for the mechanical brake to release.
- Brake engage frequency: Set to twice the nominal slip, then adjust according to the result.
- Brake engage time delay t2: Adjust according to the type of brake. It is the time required for the mechanical brake to engage.

■ Limit switch management

This function is used to manage the operation of one or two limit switches (with 1 or 2 operating directions).
Each limit (forward, reverse) is associated with a logic input. The type of stop that occurs on detection of a limit is configurable as normal, freewheel or fast stop.
Following a stop, the motor is permitted to restart in the opposite direction only.

■ Monitoring

The following data can be displayed:

- Frequency reference
- Internal PI reference
- Frequency reference (absolute value)
- Output frequency applied to the motor (value signed in two's complement)
\square Output frequency in customer units
- Current in the motor
- Motor power: $100 \%=$ nominal power
- Line voltage
\square Motor thermal state:
- 100\%: nominal thermal state, 118% : motor overload threshold
\square Drive thermal state:
- 100\%: nominal thermal state, 118% : drive overload threshold
- Motor torque: $100 \%=$ nominal torque
- Last detected fault
\square Operating time
\square Auto-tuning status
\square Configuration and state of logic inputs
- Configuration of analog inputs

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

- Fault management

There are various operating modes in the event of resettable faults:
\square Freewheel stop
\square The drive switches to the fallback speed
\square The drive maintains the speed at which it was operating when the fault occurred, until the fault disappears
\square Stop on ramp

- Fast stop

The following resettable faults are detected:
\square Drive overheating
\square Motor overheating
\square CANopen ${ }^{\text {tw }}$ bus fault

- Modbus ${ }^{\text {Tw }}$ serial link failure
- External faults
\square Loss of 4-20 mA signal

- Fault reset

This function is used to clear the last fault by means of a logic input.
The restart conditions after a reset are the same as those for a normal power-up. Resets the following faults: overvoltage, overspeed, external fault, drive overheating, output phase loss, DC bus overvoltage, loss of 4-20 mA reference, load slipping, motor overload if the thermal state is less than 100%, serial link fault.
Line supply undervoltage and input phase loss faults are reset automatically when the line supply is restored.
This function is suitable for applications where the drives are difficult to access, for example on moving parts or in material handling systems.

■ General reset (disables all faults)

This function disables all faults, including thermal protection (forced operation), and can result in irreparable damage to the drive.

This invalidates the warranty.

This function is suitable for applications where restarting may be crucial (conveyor in an oven, smoke extraction system, machines with solidifying products that need to be removed).
The function is enabled by a logic input.
Fault monitoring is active if the logic input is at state 1.
All faults are reset on a change of state $\sqrt{\Sigma}$ of the logic input.

■ Controlled stop on loss of line supply

This function is used to control motor stopping on a loss of line supply. It is suitable for material handling, machines with high inertia, continuous product processing machines.
Possible types of stop:
\square Locking of the drive and freewheel stop
\square Stop which uses the mechanical inertia to maintain the drive power supply as long as possible
\square Stop on ramp
\square Fast stop (depends on the inertia and the braking ability of the drive)
\square Stop mode in the event of a fault
The type of stop that occurs on detection of a fault is configurable as normal, freewheel or fast for the following faults:
\square External fault (detection enabled by a logic input or a bit in a Modbus or CANopen control word)
\square Motor phase loss fault
If an output contactor is being used between the drive and the motor, the motor phase loss fault should be disabled.
Introduction: \quad Specifications: \quad References: \quad Dimensions: diagrams:

■ Automatic catching of a spinning load with speed detection ("catch on the fly") This function is used to restart the motor smoothly after one of the following events, provided the run command is still present:
\square Loss of line supply or power off
\square Fault reset or automatic restart
ㅁ Freewheel stop
On disappearance of the event, the rms speed of the motor is detected in order to restart on a ramp from this speed and return to the reference speed. Speed detection can take up to 1 s depending on the initial deviation.
This function is automatically disabled if the brake sequence is configured. It is suitable for machines for which the motor speed loss is negligible during the loss of line supply (such as machines with high inertia, fans and pumps driven by a residual flow, etc.).

- Automatic restart

This function enables the drive to be restarted automatically after it has locked in fault mode, provided the fault has disappeared and the other operating conditions permit a restart.
This restart is performed by a series of automatic attempts separated by increasingly longer waiting periods of $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, then 1 minute for subsequent periods. The restart procedure can last between 5 minutes and an unlimited time. If the drive has not restarted after the configured time, it will lock and the procedure is abandoned until it has been powered off and on again.

The faults which permit this type of restart are:

- Line overvoltage
\square Motor thermal overload
\square Drive thermal overload
\square DC bus overvoltage
\square Loss of one input phase
- External fault
- Loss of 4-20 mA reference
\square CANopen ${ }^{\text {™ }}$ bus fault
- Modbus ${ }^{\text {™ }}$ serial link fault
- Line voltage too low. For this fault, the function is always active, even if it is not configured.
For these faults, the relay configured as a fault relay remains activated if the function is configured. The speed reference and direction of operation must be maintained for this function.
This function is suitable for machines or installations which are in continuous operation or are not monitored, and where a restart will not endanger equipment or personnel in any way.
- Derated operation in the event of an undervoltage

The line voltage monitoring threshold is lowered to 50% of the motor voltage. In this case, a line choke must be used and the performance of the drive cannot be guaranteed.

■ Fault relay, unlocking

The fault relay is energized when the drive is powered up and is not faulty. It contains an N/C contact and an N/O contact with common point.
The drive is unlocked after a fault in one of the following ways:

- By powering down until the ON LED goes out, then switching the drive back on
\square By assigning a logic input to the External faults function
\square By the Automatic restart function, if it has been configured

■ Resetting operating time to zero

The drive operating time can be reset to zero.

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Altivar" 312 variable speed drives

- Motor thermal protection

The theoretical temperature rise of the motor is continuously calculated to provide indirect thermal protection.
Thermal protection is adjustable from 0.2 to 1.5 times the nominal drive current.
This function is suitable for all applications with self-cooled motors.

Motor thermal protection curves

■ Drive thermal protection

Thermal protection, by a PTC probe mounted on the heatsink or integrated in the power module, ensures that the drive is protected in the event of poor ventilation or excessive ambient temperatures.
Locks the drive in the event of a fault.

Drive thermal protection curves

- R1/R2 relay configuration

The following states are signalled when the relay is powered on:
\square Drive fault
\square Drive running
\square Frequency threshold reached
\square High speed reached
\square Current threshold reached

- Frequency reference reached
\square Motor thermal threshold reached
- Brake sequence (R2 only)

Introduction:	Specifications:	References:	Dimensions:
page 20	page 22	page 28	page 50

Altivar" 312
 variable speed drives

■ AOC/AOV analog outputs

The same data is available on analog outputs AOC and AOV.
The following assignments are possible:
\square Motor current

- Motor frequency
\square Motor torque
\square Power supplied by the drive
\square Drive fault
\square Frequency threshold reached
\square High speed reached
- Current threshold reached
\square Frequency reference reached
\square Motor thermal threshold reached
\square Brake sequence
Adjusting analog outputs AOC/AOV modifies the specifications of the current analog output AOC or the voltage analog output AOV.
AOC: can be set as 0-20 mA or 4-20 mA
AOV: can be set as $0-10 \mathrm{~V}$

- Saving and retrieving the configuration

It is possible to save a configuration. This function is used to store a drive configuration in addition to the current configuration.
Retrieving this configuration clears the current configuration.

Altivar ${ }^{\text {Tm }} 312$
variable speed drives

Function compatibility table

- Configurable I/O

Functions which are not listed in this table are fully compatible.
Stop functions have priority over run commands.
The selection of functions is limited by:

- The number of drive I/O
- The incompatibility of certain functions with one another

Functions	Summing inputs	+/-speed	Limit switch management	Preset speeds	PI regulator	Jog operation	Brake sequence	DC injection stop	Fast stop	Freewheel stop
Summing inputs		\bigcirc		1	\bigcirc	1				
+/-speed	\bigcirc			-	\bigcirc	-				
Limit switch management					-					
Preset speeds	\square	-			\bigcirc	-				
PI regulator	-	-	-	\bigcirc		-	-			
Jog operation	-	\bigcirc			-		\bigcirc			
Brake sequence					-	\bigcirc		\bigcirc		
DC injection stop							\bigcirc			
Fast stop										
Freewheel stop										

Incompatible functions
Compatible functions
Not applicable

Priority functions (functions which cannot be active at the same time)
$\leftarrow \quad$ The arrow indicates which function has priority
Example: the Freewheel stop function has priority over the Fast stop function

Product reference index

A		TSX ETG 100	35
ATV 312H018M2	28	TSX SCA 50	33
ATV 312H018M3	28	TSX SCA 62	33
ATV 312H037M2	28	V	
ATV 312H037M3	28	VW3 A1 006	36
ATV 312H037N4	28	VW3 A1 007	36
ATV 312H055M2	28	VW3 A1 101	36
ATV 312H055M3	28	VW3 A1 104R10	36
ATV 312H055N4	28	VW3 A1 104R100	36
ATV 312H075M2	28	VW3 A1 104R30	36
ATV 312H075M3	28	VW3 A1 104R50	36
ATV 312H075N4	28	VW3 A1 105	36
ATV 312H075S6	28	VW3 A312 01	29
ATV 312HD11M3	28	VW3 A312 07	32
ATV 312HD11N4	28	VW3 A312 08	32
ATV 312HD11S6	28		34
ATV 312HD15M3	28	VW3 A312 09	32
ATV 312HD15N4	28	VW3 A31401	47
ATV 312HD15S6	28	VW3 A31402	47
ATV 312HU11M2	28	VW3 A31403	47
ATV 312HU11M3	28	VW3 A31404	47
ATV 312HU11N4	28	VW3 A31405	47
ATV 312HU15M2	28	VW3 A31406	47
ATV 312HU15M3	28	VW3 A31407	47
ATV 312HU15N4	28	VW3 A31408	47
ATV 312HU15S6	28	VW3 A31409	47
ATV 312HU22M2	28	VW3 A31451	49
ATV 312HU22M3	28	VW3 A31452	49
ATV 312HU22N4	28	VW3 A31453	49
ATV 312HU22S6	28	VW3 A31811	29
ATV 312HU30M3	28	VW3 A31812	29
ATV 312HU30N4	28	VW3 A31813	29
ATV 312HU40M3	28	VW3 A31814	29
ATV 312HU40N4	28	VW3 A31815	29
ATV 312HU40S6	28	VW3 A31816	29
ATV 312HU55M3	28	VW3 A31817	29
ATV 312HU55N4	28	VW3 A4 551	45
ATV 312HU55S6	28	VW3 A4 552	45
ATV 312HU75M3	28		
ATV 312HU75N4	28	VW3 A4 553	45 49
ATV 312HU75S6	28	VW3 A4 554	45
L			49
LU9 GC3	33	VW3 A4 555	45
LUF P1	35		49
T		VW3 A4 556	49
TCS CAR013M120	34	VW3 A58451	49
TCS CAR01NM120	34	VW3 A58452	49
TCS CTN023F13M03	34	VW3 A58453	49
TCS CTN026M16M	34	VW3 A7 701	43
TCSM CNAM 3M002P	40	VW3 A7 702	43
TCSW AAC13FB	40	VW3 A7 703	43
TM200 RSRCEMC	29	VW3 A7 704	43
TSX CAN CA100	34	VW3 A7 705	43
TSX CAN CA300	34	VW3 A7 723	43
TSX CAN CA50	34	VW3 A7 724	43
TSX CAN CB100	34	VW3 A7 725	43
TSX CAN CB300	34	VW3 A8 114	37
TSX CAN CB50	34	VW3 A8 115	40
TSX CAN CD100	34	VW3 A8 120	37
TSX CAN CD300	34	VW3 A8 121	37
TSX CAN CD50	34	VW3 A8 200	29
TSX CSA 100	33	VW3 A8 306	33
TSX CSA 200	33	VW3 A8 306 D30	33
TSX CSA 500	33	VW3 A8 306 DR	33

VW3 A8 306 DRC	33
VW3 A8 306 R	33
VW3 A8 306 R03	33
VW3 A8 306 R10	33
VW3 A8 306 R30	33
VW3 A8 306 RC	33
VW3 A8 306 TF03	33
VW3 A8 306 TF10	33
VW3 A9 804	29
VW3 A9 805	29
VW3 CAN CARR03	34
VW3 CAN CARR1	34
VW3 CAN TAP2	34
VZ1 L004M010	45
VZ1 L007UM50	45
VZ1 L018UM20	45
VZ3 V3 101	29
VZ3 V3 102	29
VZ3 V3 103	29
VZ3 V3 104	29

Schneider Electric USA, Inc.
8001 Knightdale Blvd.
Knightdale, NC 27545
USA Customer Care Center
Tel: 888-778-2733
Schneider Electric Canada
5985 McLaughlin Rd.
Missassauga, Ontario, Canada L5R 1B8
Canada Customer Care Center
Tel: 800-565-6699

The information and dimensions in this catalog are provided for the convenience of our customers. While this information is believed to be accurate, Schneider Electric reserves the right to make updates and changes without prior notification and assumes no liability for any errors or omissions.

Altivar, BACnet, CANopen, DeviceNet, Fipio, InterBus, Lexium, LonWorks, M340, Magelis, Modbus, Modicon, Profibus, SoMove, TeSys, TwidoSuite, Uni-Telway and Schneider Electric and logo are trademarks or registered trademarks of Schneider Electric or its affiliates in the United States and other countries. Other trademarks used herein are the property of their respective owners.

Design: Schneider Electric
Photos: Schneider Electric

[^0]: (1) These values are given for a nominal switching frequency of 4 kHz , for use in continuous operation.

 The switching frequency is adjustable from 2 to 16 kHz . Above 4 kHz , derate the nominal drive current. The nominal motor current should not exceed this value. See derating curves on page 58.
 (2) Typical value for a 4-pole motor and a maximum switching frequency of 4 kHz , with no line choke for max. prospective line Isc (4). (3) Nominal supply voltage, min. U1, max. U2: 200 (U1) to 240 V (U2), 380 (U1) to 500 V (U2), 525 (U1) to 600 V (U2).
 (4) If line Isc is greater than the values in the table, add line chokes (see page 45).
 (5) Drives supplied with category C2 or C3 integrated EMC filter. This filter can be disconnected
 (6) If a communication card is used, it takes the place of the control I/O card. To reduce installation costs, the drive can be ordered without a control I/O card. To do this, simply add a B at the end of the reference. For example: ATV 312H075N4 becomes
 ATV 312H075N4B. The communication card must be ordered separately (see page 30).
 7) EMC filter available as an option (see page 47).
 (8) Mandatory line choke to be ordered separately (see page 45).

[^1]: (1) The contents of this DVD-ROM are also available on our website www.schneider-electric.com.

[^2]: Example of installation of a communication card (1)

[^3]: All the functions of the Altivar ${ }^{\text {m" }} 312$ drive can be accessed via the communication buses and networks:

 - Control
 - Monitoring
 - Adjustment
 - Configuration

 The speed control and reference may come from different control sources:

 - Logic input or analog I/O terminals
 - Communication bus or network
 - Remote display terminal

 The advanced functions of the Altivar 312 drive can be used to manage switching of these control sources according to the requirements of the application.
 The assignment of the communication periodic I/O data can be selected using the network configuration software.
 The Altivar 312 drive is controlled using the CiA 402 native profile.
 Communication is monitored according to criteria specific to each protocol.
 Regardless of protocol type, the reaction of the drive to a communication fault can be configured as follows:

 - Freewheel stop, stop on ramp, fast stop or braked stop
 - Maintain the last command received
 - Fallback position at a predefined speed
 - Ignore the fault

[^4]: Graphic display terminal
 $+$
 female/female RJ45 adaptor
 remote cable

[^5]: (1) Filter performance is ensured if the cable lengths between the motor and the drive, given in the above table, are not exceeded. For an application with several motors connected in parallel, the cable length must include all cabling. If a cable longer than that recommended is used, the filters may overheat.
 (2) For other LR filter configurations, please consult your Customer Care Center.

[^6]: For other voltages between 24 V and 660 V , or a DC control circuit, please refer to the "Motor starter solutions - Control and protection components" catalog

[^7]: 3 operating modes: REF, MON and CONF

